Molekularbiologische Untersuchungen zur Biosynthese glykosidierter Arzneistoffe

Inauguraldissertation zur Erlangung der Doktorwürde Fakultät für Chemie, Pharmazie und Geowissenschaften Albert-Ludwigs-Universität Freiburg im Breisgau

> vorgelegt von Anke Frerich

Freiburg, August 2006

Vorsitzender des Promotionsausschusses:	Prof. Dr. G. E. Schulz
Referent:	Prof. Dr. A. Bechthold
Korreferent:	Prof. Dr. I. Merfort
Dekan:	Prof. Dr. A. Bechthold

Tag der Bekanntgabe des Prüfungsergebnisses: 14.12.2006

Am Ziele deiner Wünsche wirst du jedenfalls eines vermissen: dein Wandern zum Ziel.

Marie von Ebner-Eschenbach

Wissenschaftliche Publikationen

Bechthold,A., Weitnauer,G., Luzhetskyy,A., Berner,M., Bihlmeier,C., Boll,R., Dürr,C., Frerich,A., Hofmann,C., Mayer,A., Treede,I., Vente,A. und Luzhetskyy,M. (2005). Glycosyltransferases and other tailoring enzymes as tools for the generation of novel compounds. *Ernst Schering Res. Found. Workshop* (51), 147-163.

Hofmann,C., Boll,R., Heitmann,B., Hauser,G., Dürr,C., Frerich,A., Weitnauer, G., Glaser, S.J. und Bechthold, A. (2005). Genes encoding enzymes responsible for the biosynthesis of L-lyxose and the attachment of eurekanate during avilamycin biosynthesis. *Chem. Biol.* **12** (10), 1137-1143.

Pélissier,H.C., Frerich,A., Desimone,M., Schumacher,K. und Tegeder,M. (2004). PvUPS1, an allantoin transporter in nodulated roots of French bean. *Plant Physiol.* **134** (2), 664-675.

Tagungsbeiträge

Vorträge:

Glykosyltransferasen. Seminar des Graduiertenkollegs "Biochemie der Enzyme", Freiburg, Mai 2002

Studies on the function of glycosyltransferases and expression of deoxysugar biosynthetic genes. GENOVA-Projekt-Treffen (5. EU-Forschungsrahmenprogramm), Freiburg, Juni 2002

Glycosyltransferases - Prospects of Combinatorial Biosynthesis. Gemeinsames Seminar der Graduiertenkollegien "Proteinfunktion auf atomarer Ebene" der Universität Marburg und "Biochemie der Enzyme" der Universität Freiburg, Kleinwalsertal, August 2003

Poster:

Frerich,A., Hoffmeister,D. und Bechthold,A. Purification of enzymes involved in dTDP-Dolivose biosynthesis. Workshop der VAAM-Fachgruppe "Biologie bakterieller Naturstoffproduzenten", Freiburg, September/Oktober 2002

Frerich,A., Elling,L. und Bechthold,A. Sucrose synthase - a tool for increased avilamycin production? VAAM-Workshop: International Meeting on the Biology of Bacteria Producing Natural Compounds, Groningen, NL, September 2003

Frerich,A., Welzel,K., Vente,A. und Bechthold,A. Polyketomycin - The biosynthetic gene cluster. VAAM-Workshop: International Meeting on the Biology of Bacteria Producing Natural Products, Jena, September 2004

Inhaltsverzeichnis

Z١	JSAM	MENF	ASSUNG	1
1	EII	NLEITI	JNG	2
		C		0
	1.1	STREE		2
	1.2	STREF	PTOMYCETEN – GENETISCHE BESONDERHEITEN	2
	1.	2.1	Genregulation und Regulation der Antibiotikaproduktion	
	1.1	2.2	Streptomyceten als Expressionswirt	
	1.3	POLY	KETIDSYNTHESE UND PKS-KLASSIFIZIERUNG	5
	1.4	POLY	KETOMYCIN	/
	1.5	AVILA	MYCINE	
	1.6	BIOSY	INTHESE DER DESOXYZUCKER	12
	1.0	6.1	Glykosyltransferasen	13
	1.7	Ziels	ETZUNG DER VORGELEGTEN ARBEIT	15
2	M	ATERI/	AL UND METHODEN	16
	2.1	Вакт	ERIENSTÄMME	16
	2.2	VEKT	OREN	17
	2.3	Plas/	NIDE UND COSMIDE	17
	2.4	Oligo	ONUKLEOTIDE	19
	2.5	Medi	en und Medienzusätze	22
	2.	5.1	E. coli-Medium	22
	2.	5.2	Streptomyceten-Medien	22
	2.	5.3	Puffer und Medien für die Streptomyceten-Protoplastentransformation	
	2.	5.4	Bacillus subtilis-Medien	25
	2.	5.5	Antibiotika-Stammlösungen	25
	2.6	Снем	NIKALIEN UND ENZYME	
	2.7	Gerä	TE UND VERBRAUCHSMATERIALIEN	
	2.8	Soft	WARE	27
	2.9	Mikr	OBIOLOGISCHE METHODEN	
	2.9	9.1	Konzentrationsbestimmuna von Bakterienkulturen	
	2.9	9.2	Kultivierung und Anzucht von E. coli	
	2.9	9.3	Kultivierung und Anzucht von Streptomyceten	
	2	94	Dauerkulturen von Streptomyceten	29
	2	9.5	Anzucht von Bacillus subtilis und Herstellung einer Sporensuspension	30
	2	9.6	F coli-Transformation	
	2	97	Streptomyceten_Transformation	31
	۷.	2.7 297	 I Protoplastierung von Streptomyceten 	
		2.7.7	2 Protoplastentransformation	
	2	2.7.7 0 g	Konjugation von Strontomycos sp. Tü6028	
	۷.	2.0 202	Conjugation von Streptomyces sp. 140020	20
		2.7.0	2 Devinientenkultur (Strentomyces Stamm)	
		2.7.0	2 Kezipientenkultur (Streptomyces-Stamm)	
	2.0	2.7.0 0.0	5.3 Konjugationsansatz	ວວ ວວ
	2.10	9.9	Screening hach Dopper-Crossing-over-Mutanten	
	2.10	M 101		
	Z.	10.1		
	2.	10.2	Aikalische Lyse zur Plasmid-DNA-Isolierung aus E. coli	
	2.	10.3	WIZARA" Plus SV MINIPREPS DNA Purification System	
	2.	10.4	QIAGEN Plasmid Midi Kit	
	2.	10.5	Isolierung von Plasmid-DNA aus Streptomyceten	35

3

	2.10.6	Isolierung von genomischer DNA aus Streptomyceten	. 35
	2.10.7	Phenolextraktion und ethanolische Fällung von DNA	. 36
	2.10.8	Restriktionsspaltung	. 36
	2.10.9	Gelelektrophoretische Auftrennung von DNA	. 37
	2.10.10	DNA-Isolierung aus Agarosegelen	. 37
	2.10.11	PCR-Amplifizierungen	. 37
	2.10.	11.1 Amplifizierung zur Überprüfung möglicher pokGT1-Mutanten	. 38
	2.10.	11.2 Amplifizierung von aviD	. 38
	2.10.	11.3 Amplifizierung von <i>urdR</i>	. 39
	2.10.	11.4 Amplifizierung von aviS	. 39
	2.10.	11.5 Amplifizierung von aviT	. 40
	2.10.	11.6 Amplifizierung von simB7	. 40
	2.10.	11.7 Amplifizierung von <i>urd</i> S	. 40
	2.10.	11.8 Amplifizierung eines Vektorabschnittes	. 41
	2.10.12	PCR-basierte Gensynthese	. 41
	2.10.	12.1 Amplifizierung der susv GC-Teilstücke 3A und 3B	. 41
	2.10.	12.2 Amplifizierung der <i>aviD</i> -Promotor-Region	. 44
	2.10.13	DNA-modifizierende Enzymreaktionen	. 44
	2.10.	13.1 Klenow-Fragment	. 44
	2.10.	13.2 T4-DNA-Polymerase	. 45
	2.10.	13.3 Dephosphorylierung von DNA mit alkalischer Phosphatase	. 45
	2.10.	13.4 T7-Endonuklease I	. 45
	2 10	13.5 Ligation von DNA-Fragmenten durch T4-DNA-Ligase	45
	2 10	13.6 TA-Klonierung	46
	2 10 14	Sequenzierung von Plasmid-DNA	46
	2 10 15	Sequenzyeraleiche mit Datenbanken	. 40
	2.10.15	Southern-Hybridisierung	. 4 0
	2.10.10	16.1 Transfer der DNA auf eine Membran (Southern Blot")	. . .
	2.10.	16.2 Markierung, Hybridisierung und Detektion von Sonden-DNA	/
	2.10.	16.3 Puffer für die Southern Hybridisierung und für die Sonden Dotektion	. 4 7 //Q
	2.10.	Überovprossion und Poinigung beterolog ovprimierter Enzymo aus Streptomycoten	. 40 18
	2.10.17	17 1 Horstollung zellfreier Proteinschextrakte von UrdP. AviS. AviT und SimB7	. 40 ⊿Ω
	2.10.	17.1 Herstellung zeimeler Proteinfohexitakte von Orak, Avis, Avis and Simby	. 40 10
	2.10.	SDS Delveendersideedelektrenheuree (SDS DACE)	. 49
2	2.10.10	SDS-Polyacrylamlagelelektrophorese (SDS-PAGE)	. 49
Ζ.	11 SE	KUNDARSTOFFANALYTIK	.) I
	2.11.1	Isolierung von Sekundarstotten	.) I
	2.11.	1.1 Extraction im analytischen Maßstab	. 51
	2.11.	1.2 Extraktion im praparativen Mal3stab	. 51
	2.11.2	Agardiffusionstest	. 52
	2.11.3	Dunnschichtchromatographie	. 52
	2.11.4	Massenspektrometrische Analyse	. 52
	ERGEBN	ISSE	. 54
3.	1 Unte	rsuchung des Polyketomycin-Clusters	. 54
	3.1.1	Herstellung und Screening einer Cosmidbank	. 54
	3.1.2	Klonierung und Seguenzierung des Polyketomycin-Clusters	. 54
	3.1.3	Auswertung der Seguenzdaten	. 56
	3.1.4	Charakterisierung der Biosynthese-Proteine	. 60
	314	1 Die Polvketomvcinon-Biosvnthese	. 60
	3	1.4.1.1 Tvp-II-PKS	. 60
	3.	1.4.1.2 Cvclasen/Aromatasen	. 60
	3	1.4.1.3 Ketoreduktasen	. 61
	υ.		

3.1	1.4.1.	4 Oxygenasen	. 61
3.1	1.4.1.	5 Methyltransferasen	. 61
3.1.4	.2 I	Die 3,6-Dimethylsalicylsäure-Biosynthese	. 62
3.1.4	.3 I	Die Desoxyzuckerbiosynthese	. 64
3.1.5	Char	akterisierung weiterer Genprodukte	. 66
3.1.5	.1	Regulatorische Proteine	. 66
3.1.5	.2 1	Resistenz-vermittelnde Proteine	. 67
3.1.5	.3 I	Biotin-[Acetyl-CoA-Carboxylase]-Synthetase	. 68
3.1.5	.4 I	Proteine mit unbekannter Funktion aus dem Polyketomycin-Cluster	. 68
3.1.5	.5 r	nyo-Inositol-Metabolismus-Proteine	. 69
3.1.6	Inakt	ivierung von pokGT1	. 70
3.1.6	.1	Herstellung des Plasmids pKC1132/ΔpokGT1	. 70
3.1.6	.2 I	Konjugation von S. diastatochromogenes Tü6028	. 71
3.1.6	.3 I	Kolonien-PCR zum Prüfen der pokGT1-Mutanten	. 71
3.1.6	.4 1	Untersuchung der S. diastatochromogenes-pokGT1-Mutante	. 72
3.2 Übere	EXPRES	SSION VON DESOXYZUCKERBIOSYNTHESEGENEN	. 74
3.2.1	Hom	ologe Expression der 4-Ketoreduktase UrdR	. 76
3.2.1	.1	Erstellung des Plasmids pAF1/ <i>urdR</i>	. 76
3.2.1	.2 I	Expression von UrdR in S. fradiae RN-435	. 76
3.2.2	Hete	rologe Expression der 3-Ketoreduktase AviT	. 78
3.2.2	.1 1	Erstellung des Plasmids pAF1/aviT	. 78
3.2.2	.2 I	Expression von AviT in S. fradiae A0	. 78
3.2.3	Hete	rologe Expression der 2,3-Dehydratase AviS	. 79
3.2.3	.1 1	Erstellung des Plasmids pAF1/aviS	. 79
3.2.3	.2 I	Expression von AviS in S. fradiae A0	. 79
3.2.4	Hom	ologe Expression der 2,3-Dehydratase UrdS	. 80
3.2.4	.1 1	Erstellung des Plasmids pAF2/ <i>urd</i> S	. 80
3.2.4	.2 I	Erstellung des Plasmids pAF3/ <i>urd</i> S	. 80
3.2.4	.3 I	Expression von UrdS in S. fradiae Δurd S	. 80
3.2.5	Hete	rologe Expression der Glykosyltransferase SimB7	. 83
3.2.5	.1 1	Erstellung des Plasmids pAF1/simB7	. 83
3.2.5	.2 I	Expression von SimB7 in S. <i>fradia</i> e A0	. 83
3.3 EXPRE	SSION	I VON SUS1 UND SYNTHESE EINES CODON-OPTIMIERTEN GENS	. 85
3.3.1	Sacc	harosesynthase	. 85
3.3.2	Sacc	harose als C-Quelle	. 86
3.3.3	Inakt	ivierung von aviD	. 86
3.3.3	.1 1	Erstellung des Plasmids pSP1/aviD-S	. 87
3.3.3	.2 -	Transformation von S. viridochromogenes Tü57	. 87
3.3.3	.3	Prüfung der Mutanten per PCR	. 88
3.3.3	.4	Prüfung der Mutanten per Southern-Hybridisierung	. 88
3.3.3	.5 /	Analyse der Produkte von S. viridochromogenes ∆aviD	. 89
3.3.4	Kom	plementierung der aviD-Mutante	. 90
3.3.4	.1 1	Erstellung des Plasmids pSETerm/aviD	. 90
3.3.4	.2 1	Erstellung des Plasmids pSET152/aviD	. 90
3.3.4	.3 I	Erstellung des Plasmids pSETerm/susy	. 90
3.3.4	.4 1	Expression von AviD in S. viridochromogenes Δ aviD	. 91
3.3.4	.5 I	Expression der Saccharosesynthase Sus1 in S. viridochromogenes ΔaviD	. 92
3.3.5	Strate	egie zur Synthese eines Codon-optimierten Gens	. 92
3.3.5	.1 1	PCR-basierte Gensynthese	. 92
3.3.5	.2 I	Erstellung des Plasmids pKC1218/susy_GC	. 93

4	DISKUS	SION	95
	4.1 POLY	KETOMYCIN-BIOSYNTHESEGENCLUSTER	
	4.1.1	Polyketidsynthasen	
	4.1.	I.1 PokM1 – iterative Typ-I-PKS	
	4.1.	I.2 PokP1-3 – die "minimale" Typ-II-PKS	
	4.1.	1.3 PKS-Aktivierung trotz fehlender Phosphopantetheinyltransferase?	
	4.1.2	PokABC1 und PokABC2 – Ein Efflux-System zur Autoresistenz	
	4.1.3	PokAC1-3 – Acetyl-CoA-Carboxylase	100
	4.1.4	Vorschlag zur Biosynthese des Polyketomycins	101
	4.1.	1.1 Mögliche Biosynthese der 3,6-Dimethylsalicylsäure	101
	4.1.	1.2 Hypothetischer Desoxyzuckerbiosyntheseweg	103
	4.1.	1.3 Zusammenfassung der Polyketomycin-Biosynthese	105
	4.2 Expr	ESSION VON SUS 1 AUS SOLANUM TUBEROSUM	
	4.3 Expr	ESSION VON DESOXYZUCKERBIOSYNTHESE-PROTEINEN	
5	LITERA		109
6	ANHAN	G	
	6.1 Авки	JRZUNGSVERZEICHNIS	
	6.2 Übei	RSICHTSKARTE DES POLYKETOMYCIN-CLUSTERS	
	6.3 SON	den-DNA-Sequenzen	
	6.4 DNA	DNA-Sequenzen aus Streptomyces diastatochromogenes Tü6028	
	6.4.1	Polyketomycin-Cluster-Sequenz	124
	6.4.2	myo-Inositol-Metabolismus-Gensequenz	147
	6.5 INFC	RMATIONEN ZUR SYNTHESE VON SUSY_GC	150
	6.5.1	Aminosäure- und DNA-Sequenzen von Sus1_Soltu bzw. Susy_GC1	150
	6.5.2	Codon-Präferenz-Tabelle für S. viridochromogenes Tü57	153
	6.5.3	Primerkombinationen für die PCR-basierte Gensynthese	154
	6.6 PLAS	MIDKARTEN	
	6.6.1	Inaktivierungsplasmid pSP1/aviD-S	
	6.6.2	Expressionsplasmid pSET152/aviD	
	6.6.3	Inaktivierungsplasmid pKC1132/ΔpokGT1	
	6.6.4	Expressionsplasmid pAF1/ <i>urdR</i>	156
	6.6.5	Expressionsplasmid pAF2/urdS	156
	6.6.6	Expressionsplasmid pAF3/urdS	156
	6.6.7	Expressionsplasmid pAF1/aviS	157
	6.6.8	Expressionsplasmid pAF1/aviT	157
	6.6.9	Expressionsplasmid pAF1/simB7	157
	6.6.10	Expressionsplasmid pSETerm/susy	
	6.6.11	Expressionsplasmid pKC1218/susy_GC	158
[DANKSAGL	NG	
I	BILDUNGSC	ANG	

Zusammenfassung

Polyketomycin ist ein Glykosid-Antibiotikum, das von *Streptomyces diastatochromogenes* Tü6028 gebildet wird. Es ist aus einem linearen tetracyclischen Polyketid mit einem C-glykosidisch verknüpften Disaccharid aus den Desoxyzuckern D-Amicetose und L-Axenose und einer daran gebundenen 3,6-Dimethylsalicylsäure-Einheit aufgebaut.

Um Einblicke in die Biosynthese zu erhalten wurden Sequenzierungen durchgeführt. Es liegen 52,2 kb und 6,9 kb DNA-Sequenzdaten vor, die 41 ORF bzw. 5 ORF beinhalten.

Um nachzuweisen, daß die erhaltenen Gendaten dem Polyketomycin-Cluster zugehörig sind, wurde das Gen *pokGT1* inaktiviert. Die *pokGT1*-Mutante produziert vermehrt Polyketid-Vorstufen, jedoch kein Polyketomycin.

Durch Sequenzvergleiche konnten Aussagen über mögliche Proteinfunktionen gemacht werden. Anhand dieser Daten wurde ein hypothetischer Biosyntheseweg aufgestellt.

Ein Gen, das für die Aminosäuresequenz der Saccharosesynthase Sus1 aus Solanum tuberosum codiert, wurde synthetisch hergestellt. Das Codon-optimierte synthetische Gen dient der späteren Expression in *Streptomyces viridochromogenes*-Stämmen. Um die Aktivität des Enzyms untersuchen zu können, wurde ausgehend vom Stamm *Streptomyces viridochromogenes* Tü57 eine *aviD*-Mutante generiert. Dieser Mutante fehlt die dTDP-Glucose-Synthase, so daß die Desoxyzuckerbiosynthese zum Erliegen kommt. Die Mutante wies keine Avilamycin-Produktion auf.

Zur Bereitstellung für andere Projekte wurden Gene mit Beteiligung an der Zuckersynthese bzw. am Zuckereinbau in Expressionsvektoren kloniert. Die Enzyme wurden als Fusionsproteine mit N- bzw. C-terminalem His-Tag exprimiert. Die 2,3-Dehydratasen AviS bzw. UrdS konnten weder bei Überexpression mit N-terminalem noch mit C-terminalem His-Tag nachgewiesen werden. Die Glykosyltransferase SimB7, die 4-Ketoreduktase UrdR und die 3-Ketoreduktase AviT wurden in *Streptomyces fradiae*-Stämmen exprimiert.

1

1 Einleitung

1.1 Streptomyceten und ihre Bedeutung als Antibiotikaproduzenten

Aus unserer modernen Gesellschaft sind Antibiotika nicht mehr wegzudenken. Jährlich werden in Deutschland rund 42 Millionen Antibiotikum-haltige Präparate zur Therapie von Infekten verordnet. Damit rangieren die Antibiotika auf Rang 3 der meistverordneten Präparate (Quelle: GKV-Arzneimittelindex/WIdO). Das Spektrum an antibiotischen Substanzen und ihre Einsatzgebiete sind breit gefächert. So vereint der Begriff "Antibiotikum" nicht nur die gängigen Humantherapeutika, sondern auch Pestizide, Herbizide, Immunsuppressiva und Antibiotika, die in der Agrarwirtschaft sowie in der Veterinärmedizin zum Einsatz kommen. Gemeinsam ist vielen natürlich vorkommenden Antibiotika ihre Herkunft.

Etwa 67 % der bekannten aus Mikroorganismen stammenden Naturstoffe wurden aus Bakterien der Ordnung *Actinomycetales* isoliert. Hier ist die Gattung *Streptomyces* hervorzuheben, da sie mit 80 % den Hauptanteil der aus Actinomyceten stammenden antibiotischen Substanzen bildet (Kieser *et al.*, 2000).

Die Gattung *Streptomyces* umfaßt ubiquitär verbreitete Bodenbakterien, die Gram-positiv sind und eine obligat aerobe Lebensweise haben. Kennzeichnend ist auch der ungewöhnliche Lebenszyklus dieser Bakterien. Zumeist kommen sie in ihrer natürlichen Umgebung als Sporen vor. Die Sporen stellen eine Dauerform der Streptomyceten dar, die es ermöglicht, widrige Lebensbedingungen wie Trockenheit und Nährstoffmangel zu überstehen. Verbessern sich die Lebensbedingungen, so wird die Sporenkeimung in Gang gesetzt und die Zellen bilden ein Substratmyzel aus. Durch den Einfluß äußerer Signale erfolgt die Ausbildung eines Luftmyzels. Aus den Lufthyphen gehen durch Abschnüren neue Sporenketten hervor. Dieser Lebenszyklus und die Ausbildung eines pilzähnlichen Myzels führten zunächst zur irrtümlichen Zuordnung der Streptomyceten zu den Pilzen.

1.2 Streptomyceten – genetische Besonderheiten

Auch auf genetischer Ebene weisen die Streptomyceten einige charakteristische Eigenschaften auf. Die genomische DNA der Streptomyceten ist durch einen hohen Guanin/Cytosin-Gehalt zwischen 70 und 74 % gekennzeichnet (Chater und Hopwood, 1993) und liegt meist als lineares Chromosom vor (Volff und Altenbuchner, 2000).

Eine Eigenschaft, die die molekularbiologische Arbeit erleichtert, ist das Vorkommen von sogenannten "Genclustern" bei den Streptomyceten. So liegen sowohl die Strukturgene, als auch die entsprechenden Resistenz- oder Regulationsgene für einen Naturstoff auf einem zusammenhängenden Genomabschnitt vor (Martin und Liras, 1989).

Die Synthese von antibiotischen Stoffen und anderen Sekundärmetaboliten ist bei den Streptomyceten stark reguliert und unterliegt dem Einfluß äußerer Faktoren. Vermutlich verschaffen sich die Bakterien durch die Freisetzung antibiotischer Substanzen einen Vorteil gegenüber anderen Bakterien bei der Konkurrenz um Nährstoffe.

1.2.1 Genregulation und Regulation der Antibiotikaproduktion

Grundsätzlich ist die Genregulation bei Streptomyceten im Vergleich zu *E. coli* komplexer gestaltet. Die Genexpression wird durch zahlreiche σ -Faktoren, die mit mehreren (bis zu vier) hintereinander geschalteten Promotoren interagieren, reguliert (Kelemen *et al.*, 1996; Missiakas und Raina, 1998). Für den Abschluß der Transkription sind lange GC-reiche "inverted repeats" am Ende eines Gens oder Operons von Bedeutung (Pulido und Jiménez, 1987; Wright und Bibb, 1992). Der neu synthetisierte mRNA-Strang bildet in dem Bereich mit der palindromen Sequenz eine Haarnadelstruktur aus, die die RNA-Polymerase wahrscheinlich stoppt und so den Abbruch der Transkription herbeiführt (Gusarov und Nudler, 1999).

Die Produkte des Sekundärstoffwechsels, wozu auch die Antibiotika der Streptomyceten zählen, werden zwar in großer Vielfalt, jedoch meist in kleinen Mengen produziert. Die Synthese der Sekundärmetabolite unterliegt Kontrollmechanismen, um zu gewährleisten, daß die Synthese mit einem vertretbaren Verbrauch von Nährstoffen und Energie einhergeht.

Bei den Streptomyceten hat nicht allein der Entwicklungszustand Einfluß auf die Antibiotikaproduktion, sondern auch äußere Faktoren können durch entsprechende Signalwirkung die Antibiotika-Biosynthese fördern oder unterdrücken. Die Sekundärmetabolite werden meistens erst nach Erreichen der stationären Wachstumsphase gebildet. Zudem beeinflußt die Konzentration bestimmter Nährstoffe im Substrat den Sekundärstoffwechsel.

Die Streptomyceten nutzen neben anderen organischen Substraten vor allem Zucker als Kohlenstoffquelle. Die Zucker werden in die Zelle aufgenommen, durch spezifische Kinasen phosphoryliert (Sabater *et al.*, 1972; Ikeda *et al.*, 1984) und hauptsächlich durch Glykolyse, Hexose-Monophosphat-Weg und Krebszyklus verwertet (Salas *et al.*, 1984; Cochrane, 1996). Neben Glucose können auch andere Kohlenstoffquellen den entsprechenden Stoffwechselweg induzieren. Die Kohlenstoff-Katabolit-Repression führt dazu, daß zunächst Glucose verbraucht wird und andere Abbauwege solange unterdrückt werden.

Einige Streptomyceten stellen ihren Stoffwechsel während der Sekundärstoffsynthese von der Glykolyse auf den Hexose-Monophosphat-Weg um (Kieser *et al.*, 2000). Hinsichtlich der Antibiotikaproduktion ist bekannt, daß sich ein Überschuß an Glucose im Nährmedium nachteilig auf die Syntheserate des Antibiotikums auswirkt. Die Streptomyceten bleiben bei einer ausreichenden Glucosekonzentration im Medium in der Wachstumsphase. Daher sind oftmals Oligosaccharide als Kohlenstoffquelle zur Optimierung der Antibiotikaproduktion geeignet (Soltero *et al.*, 1953). Auch andere Medienbestandteile wie Phosphat oder Stickstoffquellen, die wachstumsfördernd wirken, können die Antibiotikaproduktion reprimieren (Weinberg, 1978; Martin, 2004).

Hinsichtlich der Antibiotikaproduktion ist bekannt, daß viele Antibiotika-Biosynthesegencluster spezifische Regulatoren enthalten. In Streptomyceten umfaßt die SARP-Familie (*"Streptomyces* antibiotic regulatory proteins") die meisten Biosyntheseweg-spezifischen Transkriptionsregulatoren (Wietzorrek und Bibb, 1997). Die Expression dieser regulatorischen Proteine unterliegt meist übergeordneten Regulationsmechanismen, die sowohl die Synthese anderer Sekundärmetabolite als auch die Ausbildung des Luftmyzels nebst Sporenbildung beeinflussen. Dies verdeutlichen beispielsweise Mutanten, die nicht sporulieren können und unfähig sind, Sekundärstoffe zu synthetisieren (Chater und Bibb, 1997).

Die übergeordneten Regulatoren wirken oft über Kontrollkaskaden auf die Expression von Biosyntheseweg-spezifischen Regulatorgenen oder Biosynthesegenen ein oder beeinflussen die Aktivität der zugehörigen Enzyme. Zu diesen übergeordneten (pleiotropen) Regulationselementen mit Einfluß auf die Antibiotika-Biosynthese zählen phosphoryliertes Guanosin (ppGpp), γ-Butyrolactone (z.B. der A-Faktor aus *S. griseus*), Proteinkinasen oder regulatorische Zweikomponentensysteme (z.B. AfsR/AfsS aus *S. coelicolor*) (Bibb, 1996; Chater und Bibb, 1997).

1.2.2 Streptomyceten als Expressionswirt

Um ein eukaryotisches Gen in einem Streptomyceten als Wirt zu exprimieren, sind Besonderheiten bezüglich der Streptomycetengenetik zu beachten. Bei Streptomyceten wird neben dem "typischen" Methionin-Start-Codon "AUG" (63 %) der Translationsstart häufig durch das Valin-Codon "GUG" (36 %) eingeleitet. Die Lysin-Codone "UUG" oder "CUG" können auch als Start-Codon fungieren, spielen allerdings nur eine Nebenrolle (≤ 1 %).

Gene aus Eukaryoten müssen in Form von cDNA ("complementary DNA" = ausgehend von mRNA erhaltene DNA-Sequenz eines Gens) in den Streptomyceten-Wirt eingebracht werden, da die Bakterien die mRNA direkt ohne Spleißen in eine Aminosäuresequenz translatieren.

Die Expression von artfremden Genen in Streptomyceten kann auch durch den stark abweichenden GC-Gehalt der DNA erschwert werden. Der GC-Gehalt beträgt innerhalb eines Codons durchschnittlich 71 % für das erste Nukleotid, 50 % für das zweite Nukleotid und 91 % für das dritte Nukleotid (Wright und Bibb, 1992). Der hohe GC-Anteil für das dritte Nukleotid ist bei der Sequenzauswertung von Vorteil, da es die Vorhersage von offenen Leserahmen erleichtert. Untersuchungen zum Codongebrauch der Streptomyceten zeigten, daß einige Codone (wie z.B. die Leucin-Codone "UUA" und "CUA") äußerst selten in Gensequenzen vorkommen (Wright et al., 1992). Entsprechend ihrer Codon-Präferenz exprimieren die Streptomyceten nicht alle möglichen tRNA-Moleküle in gleichen Mengen. Vielmehr gibt es sogar Hinweise darauf, daß das Vorkommen seltener Codone innerhalb der Gensequenz die Proteinexpression auf Translationsebene reguliert. Das Leucin-Codon "UUA" ist auf eine kleine Anzahl von Genen beschränkt, die bei der Differenzierung oder Antibiotikaproduktion eine Rolle spielen (Leskiw et al., 1991a und 1991b). In S. coelicolor A3(2) wird die tRNA-Variante, die ausschließlich das seltene Leucin-Codon "UUA" erkennt, von dem Gen bldA codiert (Lawlor et al., 1987). Leskiw und Mitarbeiter stellten fest, daß diese tRNA-Variante abhängig vom Entwicklungszustand der Streptomyceten überwiegend in älteren Kulturen exprimiert wird (Leskiw et al., 1993). Dies hat zur Folge, daß es bei der Translation von mRNA, die das UUA-Codon enthält, besonders während der vegetativen Wachstumsphase Probleme geben kann.

Bei der Überexpression artfremder Gene in einem Streptomyceten-Stamm empfiehlt es sich, die besonders seltenen Basentripletts (wie z.B. TAA, TTT, TTA, CTA, TCT) durch "stille Mutationen" in häufiger genutzte Codone umzuwandeln. Falls der Wirtsstamm über ein Restriktionssystem zur Erkennung und Zerstörung von Fremd-DNA verfügt, sollte darauf geachtet werden, daß das Expressionsplasmid keine entsprechenden Restriktions-schnittstellen enthält.

1.3 Polyketidsynthese und PKS-Klassifizierung

Polyketidsynthasen (PKS) sind maßgeblich an der Synthese der Polyketidgrundgerüste beteiligt. Der bei der Synthese ablaufende Mechanismus, bei dem es zur sequentiellen Kettenverlängerung einer "Starter-Einheit" (meist Acetyl-CoA) mit CoA-aktivierten Acyl-Einheiten (z. B. Malonyl-CoA) kommt, ähnelt stark den Abläufen bei der Fettsäurebiosynthese (Hopwood und Sherman, 1990).

Anstelle des Acetyl-CoA akzeptieren einige PKS, besonders vom Typ I, andere "Starter-Moleküle", wie beispielsweise Malonyl-, Methylmalonyl- oder Propionyl-CoA. Dies trägt zur strukturellen Vielfalt der Polyketide bei.

Die Verknüpfung der einzelnen Einheiten erfolgt durch Claisen-Kondensation, wobei β -Keto-Intermediate gebildet werden, die weiteren Modifikationen (wie z.B. Hydroxylierung, Oxidation, Reduktion, Methylierung oder Glykosylierung) unterliegen (Hopwood, 1997; Staunton und Weissman, 2001).

Generell werden bei den bakteriellen Polyketidsynthasen drei Typen unterschieden. Obwohl sich die drei PKS-Typen in ihrem Aufbau und dem von ihnen katalysierten Reaktionsablauf deutlich unterscheiden, werden stets ausgehend von Acyl-CoA-Einheiten in mehreren decarboxylierenden Kondensationsschritten Polyketide synthetisiert. Dabei katalysiert jeweils eine β-Ketoacyl-Synthase-Domäne oder -Untereinheit (KS) die C-C-Verknüpfung.

Die Polyketidsynthasen vom Typ I sind multifunktionale Enzyme, die sich aus Modulen mit unterschiedlichen katalytischen Domänen zusammensetzen. Neben der Ketoacyl-Synthase kommen Domänen mit Funktion als Acyltransferase (AT), Dehydratase (DH), Enoylreduktase (ER), Ketoreduktase (KR) oder Acyl-Carrier-Protein (ACP) vor. Bei der Verlängerung der Polyketidkette fügt jedes Modul eine Einheit hinzu (Donadio *et al.*, 1991; Bevitt *et al.*, 1992). Die Thioesterase-Domäne (TE) agiert zuletzt und löst durch hydrolytische Spaltung die synthetisierte Polyketidkette von dem Enzym. Die Typ-I-PKS sind vor allem an der Biosynthese reduzierter Polyketide beteiligt, darunter z.B. Polyene, Macrolide und Polyether. Anhand des modularen Aufbaus eignet sich dieser PKS-Typ besonders gut für genetische Manipulationen, die darauf abzielen, die Molekülstruktur des Polyketids zu verändern. Daher wurden an modularen Typ-I-PKS bereits zahlreiche Studien durchgeführt, die dazu führten, daß veränderte Naturstoffe synthetisiert werden konnten (Marsden *et al.*, 1998; Hutchinson, 1998).

Neben den modularen Typ-I-PKS sind vor rund 10 Jahren die ersten bakteriellen iterativen Typ-I-PKS entdeckt worden. Sie unterscheiden sich von den bislang klassifizierten PKS-Typen, haben aber Ähnlichkeit zu Typ-I-PKS aus Pilzen. Zu dieser PKS-Klasse gehört u.a. AviM aus dem Avilamycin-Produzenten *S. viridochromogenes* Tü57 (Gaisser *et al.*, 1997a). Bei diesen Polyketidsynthasen werden die einzelnen Domänen (enzymatischen Aktivitäten) mehrfach genutzt (Shen, 2003). Es wurden bisher noch keine Studien veröffentlicht, bei denen einzelne Domänen inaktiviert oder ausgetauscht wurden. Es bleibt fraglich, ob sich iterative Typ-I-PKS in ähnlicher Weise wie die modularen PKS eignen, um auf diese Weise veränderte Polyketide zu erhalten.

Die Typ-II-Polyketidsynthasen setzen sich aus mehreren Einzelproteinen mit je einer katalytischen Aktivität zusammen. Die einzelnen Enzymaktivitäten des Multienzymkomplexes laufen bei jedem Kondensationsschritt wiederholt ab (iterativ). Aus der Biosynthese durch Typ-II-PKS entstehen ausgehend von den primär gebildeten Polyketidketten durch Cyclisierung und Dehydratisierung aromatische Polyketide, die mono- oder polycyclisch sein können (z.B. Tetracyclin). Eine gut untersuchte PKS vom Typ II ist die Actinorhodin-PKS aus *S. coelicolor* A3(2) (Malpartida und Hopwood, 1984; McDaniel *et al.*, 1993; McDaniel *et al.*, 1994).

Jede Typ-II-PKS verfügt über drei elementare Enzyme, die die sogenannte Minimal-PKS-Einheit bilden (McDaniel *et al.*, 1994). Nach neuerer Nomenklatur werden diese Enzyme als Ketosynthase α (KS_{α}; bisher: KS für Ketosynthase), Ketosynthase β (KS_{β}; bisher: CLF für "chain length factor" oder Kettenlängenfaktor) und Acyl-Carrier-Protein (ACP) bezeichnet (Carreras und Khosla, 1998; Staunton und Weissman, 2001).

Die Syntheseleistung der Typ-II-PKS beginnt üblicherweise damit, daß ein am ACP gebundener Malonylrest decarboxyliert und die Acetyl-Gruppe als Starter-Einheit ins aktive Zentrum der KS_{α} übertragen wird. Das ACP wird erneut mit einem Malonylrest beladen. Es folgt die Kondensationsreaktion durch die KS_{α}, die zur Bildung von Acetoacetyl-ACP führt. Der entstandene Ketoester wird vom ACP auf KS_{α} übertragen und steht als Substrat für weitere Kondensationszyklen bereit (Zhou *et al.*, 1999).

Die "minimale PKS" ist ausreichend, um eine Polyketidkette mit bestimmter Länge zu synthetisieren. Es gibt Hinweise, daß dabei nicht KS_{β} allein als "Kontrollinstanz" für die Kettenlänge fungiert, sondern zusammen mit KS_{α} Einfluß auf die Anzahl der Kondensationsschritte hat (Shen *et al.*, 1995).

Damit aus der Polyketidkette ein bestimmtes cyclisches Polyketid entsteht, bedarf es weiterer enzymatischer Reaktionen, wie z.B. der spezifischen Faltung und der Aktivität von Cyclasen, damit der erste Ringschluß korrekt ablaufen kann.

Der dritte bei Bakterien festgestellte Polyketidsynthase-Typ ist mit den pflanzlichen Chalkonsynthasen verwandt. Bei den bakteriellen Typ-III-Polyketidsynthasen liegt das Enzym als Homodimer vor. Diese kondensierenden Enzyme arbeiten iterativ. Im Unterschied zu Typ-I- und Typ-II-PKS arbeiten die Typ-III-PKS unabhängig von einem ACP. Diese PKS sind in der Lage, direkt mit den Acyl-CoA-Substraten zu interagieren. (Funa, 1999; Moore *et al.*, 2002).

1.4 Polyketomycin

Das aromatische Polyketid-Antibiotikum Polyketomycin wurde sowohl aus dem *Streptomyces*-Stamm MK227-AF1 (Momose *et al.*, 1998a) als auch aus *Streptomyces diastatochromogenes* Tü6028 isoliert (Paululat *et al.*, 1999). Momose *et al.* (1998b) führten neben der Strukturaufklärung des Polyketomycins Untersuchungen zur Bioaktivität des Polyketomycins durch.

Polyketomycin bildet ein orangefarbenes Pulver (MW 864), das im UV-Spektrum Absorptionsmaxima bei 208 nm, 243 nm, 282 nm und 445 nm aufweist. Die Substanz wirkt bakteriostatisch gegen Gram-positive Keime, darunter auch der Methicillin-resistente *Staphylococcus aureus* (MHK < 0,2 µg/ml). Zudem weist die Substanz cytotoxische Aktivität

auf. Eine Wirkung gegen Gram-negative Bakterien wurde nicht festgestellt. Hinweise auf den möglichen Wirkmechanismus des Polyketomycins gibt es derzeit noch nicht.

Das Polyketomycin setzt sich aus vier Strukturelementen zusammen (s. Abb. 1.1): einem tetracyclischen Polyketid (Polyketomycinon), zwei Desoxyzuckern (β -D-Amicetose und α -L-Axenose) sowie einer 3,6-Dimethylsalicylsäure.

Bei der L-Axenose handelt es sich um eine 2,6-Didesoxypyranose, die in antibakteriellen Sekundärmetaboliten relativ selten vorkommt (z.B. in Axenomycin; Della Bruna *et al.*, 1973). Bei der D-Amicetose handelt es sich um eine 2,3,6-Tridesoxypyranose, die etwas häufiger in Antibiotikastrukturen auftritt (z.B. in Amicetin; DeBoer *et al.*, 1953). Erst kürzlich konnten Pérez *et al.* (2005) durch Kombination verschiedener Zuckerbiosynthesegene, die mehreren Antibiotika-Biosynthesegenclustern entstammten, *in vivo* die Nukleotid-aktivierten Zucker D- und L-Amicetose synthetisieren.

Abb. 1.1: Struktur des Antibiotikums Polyketomycin aus *Streptomyces* sp. MK227-AF1 bzw. *S. diastatochromogenes* Tü6028. Polyketomycin setzt sich aus Polyketomycinon, den Desoxyzuckern β-D-Amicetose und α-L-Axenose sowie einem 3,6-Dimethylsalicylsäurerest zusammen.

Paululat et al. (1999)untersuchten an dem Polyketomycin-Produzenten S. diastatochromogenes Tü6028 durch Fütterung radioaktiv markierter Vorläufer die Herkunft der Kohlenstoffatome im Polyketomycin. Demnach sind am Aufbau des Polyketomycinons zehn Acetatmoleküle sowie zwei Methylgruppen beteiligt. Die beiden Zucker werden ausgehend von Glucose synthetisiert, wobei die a-L-Axenose noch eine zusätzliche Methylgruppe trägt. Am Aufbau des Dimethylsalicylsäurerestes sind vier Acetatmoleküle sowie eine Methylgruppe beteiligt. Paululat et al. (1999) gehen aufgrund ihrer Untersuchungen davon aus, daß zwei Polyketidsynthasen vom Typ II nötig sind, um das Dekaketid des Aglykons Polyketomycinon und das Tetraketid der Salicylsäure zu synthetisieren.

Polyketomycin enthält mit dem Polyketomycinon einen tetracyclischen Strukturteil, der an Tetracyclin- und Anthracyclin-Antibiotika erinnert. Bislang sind jedoch kaum Strukturen bekannt, die der Gesamtstruktur des Polyketomycins ähneln. Die wenigen bekannten Naturstoffe dieser Strukturklasse wurden ebenfalls aus Streptomyceten-Kulturen isoliert: Die strukturell mit Polyketomycin verwandten Verbindungen (s. Abb. 1.2) sind das

antitumorwirksame Dutomycin aus *Streptomyces* sp. 1725 (Xuan *et al.*, 1992), der DNA-Methyltransferase-Inhibitor DMI-2 (ein Tautomer des Dutomycins) aus dem *Streptomyces*-Stamm Nr. 560 (Nagao *et al.*, 1996) und die aus *Streptomyces tendae* HKI-179 isolierten Cervimycine mit antibakterieller und zytotoxischer Wirkung (Herold, 2005).

Abb. 1.2: Strukturverwandte Moleküle des Polyketomycins. Cervimycin A aus S. tendae HKI-179 mit den Hexosen β-D-Amicetose (A, E und F) und α-L-Rhodinose (B, C und D). Dutomycin aus S. sp. 1725 und das zu Dutomycin tautomere DMI-2 aus dem Streptomyces-Stamm Nr. 560 jeweils mit einem Disaccharid aus D-Amicetose und L-Axenose und einer 2,4-Dimethyl-2-heptensäure.

Kennzeichnend für das Polyketomycin und seine strukturell verwandten Moleküle ist das chinoide System des D-Rings am Naphthacengrundgerüst. Eine weitere Gemeinsamkeit ist das Auftreten einer Hydroxylgruppe am C-11 und einer Ketogruppe am C-12 in umgekehrter Position zu den klassischen Tetracyclinen (s. Abb. 1.3). Eine solche Chinonteilstruktur tritt sonst nur noch in Naturstoffen mit größeren Ringsystemen auf, wie z.B. in dem aus *Streptomyces* sp. SF2446 gewonnenen Benz[a]naphthacenderivat SF2446 A1 (s. Abb. 1.3; Gomi *et al.*, 1988).

Abb. 1.3: Struktur von Tetracyclin aus *S. aureofaciens* und SF2446 A1 aus *S.* sp. SF2446. Die Struktur des Tetracyclins weist in Positionsumkehr zum Polyketomycin am C-11 eine Ketogruppe und am C-12 eine Hydroxylgruppe auf. Die Verbindung SF2446 A1 ist ein Beispiel für ein Molekül mit chinoidem System im pentacyclischen Grundgerüst.

Erläuterungen zu der Verbindung DMI-2 und den Cervimycinen

DMI-2 (s. Abb. 1.2) wurde aus *S.* sp. Nr. 560 isoliert und ist ein orangefarbiger Feststoff mit einer Molekülmasse von 854 Da. Die Substanz ist ein Tautomer des Antitumor-Antibiotikums Dutomycin, das aus *Streptomyces* sp. 1725 isoliert wurde (s. oben). Das tetracyclische Grundgerüst, das am C4-Atom mit einem Disaccharid aus D-Amicetose und L-Axenose verknüpft ist, entspricht dem Polyketomycinon. In Inhibierungs-Studien zeigte DMI-2 Wirkung als DNA-Methyltransferase-Inhibitor.

Ebenso wurden einige andere getestete Enzyme, darunter die Endonukleasen Scal, Pstl, EcoRI und DNase II durch DMI-2 gehemmt (Nagao et al., 1996). Die Stärke der Inhibierung war abhängig von pH-Wert und Temperatur des Reaktionsansatzes. DMI-2 konnte die N⁶-Methyladenin-DNA-Methyltransferase (M. EcoRI) in Gegenwart von Plasmid-DNA kompetetiver Weise (pUC19) in inhibieren. Die Inhibierung bei Zusatz des Methylgruppendonors SAM war nicht kompetetiv. Aus diesen Ergebnissen folgerten Nagao und Kollegen (1996), daß DMI-2 die M. EcoRI-Bindestelle von pUC19 blockiert und so die Bindung der Methyltransferase verhindert.

Die Strukturaufklärung der Cervimycine sowie Untersuchungen zur Biosynthese und Wirkweise fanden erst vor kurzem statt (Herold *et al.*, 2004; Herold, 2005; Herold *et al.*, 2005). Neben den Hauptkomponenten Cervimycin A und C wurden auch natürliche und durch Hydrolyse oder O-Methylierung erzeugte Derivate bei den Untersuchungen zur Bioaktivität berücksichtigt. Besonders herausragend sind die antibakteriellen Eigenschaften einiger Verbindungen.

Hinsichtlich antiviraler und zytotoxischer Aktivität wurden keine oder nur schwache Effekte beobachtet. Um zu prüfen, ob Cervimycine ähnlich den Tetracyclinen an Ribosomen wirken oder wie Anthracycline zur DNA-Interkalierung fähig sind, wurden entsprechende Tests durchgeführt. Die Tests verliefen negativ, was darauf schließen läßt, daß die Bioaktivität der getesteten Cervimycine auf einem anderen Wirkprinzip beruht.

1.5 Avilamycine

Bereits 1959 wurde die Produktion des Oligosaccharid-Antibiotikums Avilamycin durch *Streptomyces viridochromogenes* Tü57 nachgewiesen (Buzzetti *et al.*, 1968). Die Avilamycine zählen zur Klasse der Orthosomycine, da sie als Strukturmerkmal zwei ungewöhnliche Orthoester-Bindungen aufweisen. Weitere Antibiotika aus der Klasse der Orthosomycine sind die Curamycine (Galmarini *et al.*, 1961), die Everninomycine (Weinstein *et al.*, 1965) und die Flambamycine (Ninet *et al.*, 1974).

Das Hauptprodukt Avilamycin A (s. Abb. 1.4) besteht aus einem Dichloroisoeverninsäurerest (Ring A), der esterglykosidisch mit einer Heptasaccharidkette verknüpft ist. Die Saccharidkette des Avilamycins A enthält D-Olivose (Ringe B und C), 2-Desoxy-D-evalose (Ring D), 4-O-Methyl-D-fucose (Ring E), 2,6-Di-O-Methyl-D-mannose (Ring F), L-Lyxose (Ring G) und Eurekanat (Ring H). Zwischen den Ringen C und D sowie G und H kommt es zur Ausbildung der charakteristischen Orthoester-Bindungen.

Abb. 1.4: Struktur von Avilamycin A aus S. viridochromogenes Tü57. Die Bestandteile des Moleküls sind mit den Buchstaben A-H gekennzeichnet. A: Dichloroisoeverninsäure, B und C: D-Olivose, D: 2-Desoxy-D-evalose, E: 4-O-Methyl-Dfucose, F: 2,6-Di-O-Methyl-D-mannose, G: L-Lyxose, H: Eurekanat

Das Avilamycin-Biosynthesegencluster wurde bereits sequenziert (Gaisser *et al.*, 1997a) und die erhaltenen Daten wurden zur Erstellung eines hypothetischen Avilamycin-Biosyntheseweges genutzt (Weitnauer *et al.*, 2001b).

Neben Avilamycin A wurden weitere Avilamycine identifiziert, deren Strukturen sich nur wenig voneinander unterscheiden (Buzzetti *et al.*, 1968; Mertz *et al.*, 1986). Durch Inaktivierung von Methyltransferasegenen aus dem Avilamycin-Biosynthesegencluster wurden Mutanten geschaffen, die weitere Avilamycin-Derivate produzieren. Die sogenannten Gavibamycine sind im Bereich der Heptasaccharidkette in geringerem Maße methyliert und verfügen gegenüber den Avilamycinen über eine bessere Wasserlöslichkeit (Weitnauer *et al.*, 2004).

Avilamycin A wirkt ebenso wie andere Orthosomycine gegen multiresistente Gram-positive Keime darunter beispielsweise *Staphylococcus aureus*. Zur Wirkweise ist bekannt, daß Avilamycin A die Proteinbiosynthese durch Bindung an die 50S-Untereinheit des Ribosoms hemmt (McNicholas *et al.*, 2000). Untersuchungen an den Resistenz-vermittelnden rRNA-Methyltransferasen AviRa und AviRb zeigten, daß sich der Produzent *S. viridochromogenes* Tü57 durch Methylierung zweier Basen der 23S-rRNA vor der Avilamycin-Wirkung schützt (Treede *et al.*, 2003). Jüngere Röntgenstrukturanalysen mit kristallisierten Ribosomen, die in eine Avilamycin-Lösung gebracht wurden, zeigten, daß das Avilamycin-Molekül eine U-Form annimmt und sich in einem Hohlraum der ribosomalen 23S-Untereinheit anlagert (Hofmann, 2005).

1.6 Biosynthese der Desoxyzucker

Die von Streptomyceten gebildeten Naturstoffe sind, wie die Beispiele in Abb. 1.5 verdeutlichen, oftmals glykosyliert.

Die gezeigten Antibiotika Erythromycin A, Daunomycin, Aclacinomycin A und Amphotericin B enthalten alle als Molekülbestandteil eine oder mehrere Desoxyhexosen, darunter auch Aminozucker.

Für die biologische Aktivität antibiotischer Verbindungen sind diese Zuckermoleküle oftmals sehr bedeutend (Weymouth-Wilson, 1997). Wenn die Zucker fehlen, ändern sich die chemischen und pharmakologischen Eigenschaften der Verbindung. Es kommt infolgedessen oftmals zum Verlust der Aktivität.

Zum Verständnis der Biosyntheseabläufe der natürlich vorkommenden Desoxyzucker haben entsprechende molekularbiologische und biochemische Untersuchungen in den letzten Jahren beigetragen. Aufgrund der festgestellten Gemeinsamkeiten hinsichtlich der vorkommenden Biosyntheseenzyme sind Rückschlüsse auf die Reaktionsabfolge möglich (Liu und Thorson, 1994; Kirschning *et al.*, 1997; Trefzer *et al.*, 1999; Chen *et al.*, 2000).

Abb. 1.5: Glykosylierte Antibiotika, bei denen nachweislich der Zuckeranteil bedeutend für die Bioaktivität ist: Erythromycin A aus Saccharopolyspora erythraea, Daunomycin aus S. peucetius, Aclacinomycin A aus S. galilaeus und Amphotericin B aus S. nodosus.

Demnach beginnt die Biosynthese der dNDP-aktivierten Desoxyhexosen mit Glucose-1phosphat, das aus dem Primärstoffwechsel stammt. Ausgehend von Glucose-1-phosphat erfolgt die Aktivierung zu dNDP-D-Glucose durch eine dNDP-Glucose-Synthase. Eine dNDP-D-Glucose-4,6-Dehydratase katalysiert die Umwandlung der dNDP-D-Glucose zu dNDP-D-4keto-6-desoxyglucose. Im Anschluß an diesen Schritt kann sich der Biosyntheseweg bereits in D- und L-Desoxyhexosen teilen. Eine 3,5-Epimerase kann an dieser Stelle die dNDP-D-4-keto-6desoxyglucose in den entsprechenden L-Zucker überführen. Ohne die katalytische Aktivität der Epimerase gehören die entstehenden Zucker zu den D-Desoxyhexosen.

Sowohl D-, als auch L-Zucker erfahren weitere Enzym-katalysierte Modifikationen, wie z.B. Reduktion, Dehydratisierung, Methylierung oder Isomerisierung. Auf diese Weise wird abhängig von den Zucker-modifizierenden Enzymen, über die der jeweilige Antibiotikaproduzent verfügt, eine Vielfalt an unterschiedlichen aktivierten Desoxyhexosen gebildet. Bislang wurde von mehr als 70 verschiedenen 6-Desoxyhexosen aus Bakterien, Pilzen und Pflanzen berichtet (Kirschning *et al.*, 1997; Trefzer *et al.*, 1999).

Exemplarisch ist in Abb. 1.6 der Syntheseweg der dNDP-D-Olivose und dNDP-2-Desoxy-Devalose in *Streptomyces viridochromogenes* Tü57 wiedergegeben. Die Übertragung der aktivierten Zuckermoleküle auf das entsprechende Substrat erfolgt durch Glykosyltransferasen, die im nächsten Abschnitt näher beschrieben werden.

Abb. 1.6: Biosyntheseweg der dNDP-D-Olivose und dNDP-2-Desoxy-D-evalose in S. *viridochromogenes* Tü57 (nach Weitnauer et al., 2001b). Die Enzyme UrdS bzw. UrdR aus S. *fradiae* Tü2717 sind als Homologe von AviS bzw. AviZ3 ebenfalls dargestellt (Hoffmeister et al., 2000). AviD = dNDP-Glucose-Synthase; AviE1 = dNDP-Glucose-4,6-Dehydratase; AviG1 = Methyltransferase; AviS bzw. UrdS = 2,3-Dehydratase; AviT = 3-Ketoreduktase; AviZ2 oder AviZ1 = 4-Ketoreduktase;

1.6.1 Glykosyltransferasen

Glykosyltransferasen sind Enzyme, die Zucker auf ein Akzeptor-/Zielmolekül übertragen. Der Zucker bindet zumeist in Nukleotid-aktivierter Form an die Glykosyltransferase, wobei UDP und TDP am häufigsten auftreten. Bei der Knüpfung der überwiegend O-glykosidischen Bindung wird das Nukleotid abgespalten.

Die Übertragung von Zuckergruppen spielt nicht nur bei antibiotischen Sekundärstoffen eine Rolle, sondern es werden die unterschiedlichsten Substrate glykosyliert, wie z.B. Weise Nukleinsäuren, Proteine, Lipide oder Oligosaccharide. Auf diese sind Glykosyltransferasen an der Synthese der Zellwandpolymere Cellulose, Murein und Chitin oder der Speicherstoffe Stärke und Glykogen beteiligt (Hu und Walker, 2002). Auch die für die Zell-Zell-Kommunikation notwendigen und als Rezeptoren dienenden Zelloberflächen-Oligosaccharide werden durch Glykosyltransferasen gebildet (Gagneux und Varki, 1999; Hu und Walker, 2002).

Neben der Syntheseleistung für den Stoffwechsel haben Glykosyltransferasen auch Einfluß auf die Regulation zahlreicher eukaryotischer Gene (Zachara und Hart, 2002), indem sie beispielsweise Transkriptionsfaktoren glykosylieren (Jackson und Tjian, 1988).

Entsprechend den unterschiedlichen Substrat- und Akzeptormolekülen gibt es eine Vielzahl von Glykosyltransferasen, die zumeist sehr spezifische Aktivität aufweisen. Die Ausprägung der Spezifität ist unterschiedlich stark und hängt auch von der biologischen Funktion einer Glykosyltransferase ab. Während einige bekannte Glykosyltransferasen aus Antibiotika-Flexibilität der biosynthesewegen wenig hinsichtlich akzeptierten Zucker und Akzeptormoleküle zeigen, gibt es auch Glykosyltransferasen, die eine Vielfalt an Substraten akzeptieren. Als Beispiel seien einige im endoplasmatischen Reticulum der menschlichen Leber vorkommenden UDP-Glucuronosyltransferasen genannt, die ein breites Spektrum lipophiler Verbindungen wie z.B. Steroide oder ungesättigte Fettsäuren glucuronosidieren, damit diese in wasserlöslicher Form aus dem Körper ausgeschieden werden können (Radominska-Pandya et al., 1999).

Hinsichtlich der katalysierten Reaktion und Sequenzhomologie wurden Glykosyltransferasen innerhalb des CAZy-Systems (CAZy = "carbohydrate-active enzymes"; http://afmb.cnrs-mrs.fr/~cazy/CAZY/index.html) klassifiziert und in bisher 84 Familien eingeteilt (Campbell *et al.*, 1997; Coutinho *et al.*, 2003).

Die Strukturen einiger Glykosyltransferasen wurden bereits aufgeklärt. Die Aminosäuresequenzen der Glykosyltransferasen weisen große Unterschiede auf, die nicht unbedingt auf einen hohen Verwandtschaftsgrad schließen lassen (Hu und Walker, 2002). Trotzdem zeigen sich große Ähnlichkeiten hinsichtlich der dreidimensionalen Proteinstruktur. So weisen z.B. die aus *E. coli* stammende N-Acetylglucosaminyltransferase MurG und die β-Glucosyltransferase BGT aus dem Phagen T4 ähnliche Strukturen auf, obwohl die Sequenzidentität nur 10 % beträgt (Vrielink *et al.*, 1994; Moréra *et al.*, 1999; Ha *et al.*, 2000; Mulichak *et al.*, 2001; Hu und Walker, 2002).

Die Glykosyltransferasen wurden aufgrund der zunächst bekannten Kristallstrukturen in nur zwei Strukturfamilien (GT-A und GT-B) mit identischer Topologie und hoher Strukturähnlichkeit eingeteilt (Ünligil und Rini, 2000; Bourne und Henrissat, 2001). Mittlerweile lassen Strukturvorhersagen auf die Existenz zweier weiterer Strukturfamilien (GT-C und GT-D) schließen (Liu und Mushegian, 2003; Kikuchi *et al.*, 2003).

1.7 Zielsetzung der vorgelegten Arbeit

Gegenstand dieser Arbeit waren Untersuchungen an Biosynthesegenen aus den Clustern verschiedener glykosidierter Naturstoffe aus Streptomyceten.

Ein Schwerpunkt lag bei der Sequenzierung und Analyse des Polyketomycin-Biosynthesegenclusters. Für Polyketomycin oder einen strukturverwandten Naturstoff wurden bisher noch keine vollständigen Biosynthesegencluster veröffentlicht.

✿ Durch das Screening einer Cosmidbank sollte das Polyketomycin-Cluster detektiert werden. Die Sequenzierung der entsprechenden Cosmide zur Erstellung einer Gesamtsequenz sollte durchgeführt werden. Die erhaltenen Daten sollten zur Annotation der Gene und zur Erstellung eines hypothetischen Biosyntheseweges genutzt werden. Außerdem sollte der Nachweis der Zugehörigkeit der erhaltenen Sequenzdaten zum Polyketomycin-Biosynthesegencluster durch Geninaktivierung erbracht werden. Dazu war es nötig, für den Produzenten S. diastatochromogenes Tü6028 eine geeignete Transformationsbzw. Konjugationsmethode zu finden.

O Um das Gen für das pflanzliche Protein Sus1 aus Solanum tuberosum zur Expression in Streptomyceten einsetzen zu können, sollte die DNA-Sequenz in für Streptomyceten optimierte Codone umgeschrieben und synthetisiert werden. Als Expressionswirt sollte ausgehend vom Avilamycin-Produzenten *S. viridochromogenes* Tü57 eine *aviD*-Mutante hergestellt werden.

Weiterhin sollte die Überexpression unterschiedlicher Desoxyzuckerbiosynthesegene und eines Glykosyltransferasegens in Streptomyceten-Wirtsstämmen durchgeführt werden. Dazu sollten ausgehend von einem Überexpressionsvektor neue Vektoren erstellt werden, die die Möglichkeit bieten, die Zielproteine als Hexahistidin-Fusionsproteine zu exprimieren.

2 Material und Methoden

2.1 Bakterienstämme

Tab. 2.1: Übersicht über die in dieser Arbeit verwendeten Bakterienstämme.

Stamm	Charakterisierung	Referenz
<i>Escherichia coli</i> BL21 (DE3) pLysS	F-, <i>dcm</i> , <i>ompT</i> , <i>hsdS</i> (r _B ⁻ m _B ⁻), <i>gal</i> λ(DE3) [pLysS Cam ^r] ^a	Stratagene
Escherichia coli DH5 α	F-, recA1, endA1, hsdR17(r_k , m_k ⁺), supE44, λ , thi-1, gyrA96, relA1	Invitrogen
Escherichia coli ET12567	F-, dam-13::Tn9, dcm-6 hsdM, hsdR, zjj-202::Tn10, recF143, galK2, galT22, ara-14, lacY1, xyl-5, leuB6, thi-1, tonA31, rpsL136, hisG4, tsx78, mtl-1, glnV44	MacNeil <i>et al.</i> , 1992
<i>Escherichia coli</i> XL1-Blue MRF'	recA1, endA1, gyrA96, thi-1, hsdR17, supE44, relA1, lac [F' proAB, lacI $^{q}Z \Delta M15$, Tn10 (Tet ^r)]	Stratagene Bullock <i>et al.</i> , 1987
Streptomyces diastatochromogenes Tü6028	Wildtyp; Polyketomycin-Produzent	Momose <i>et al</i> ., 1998a Paululat <i>et al</i> ., 1999
Streptomyces diastatochromogenes ∆pokGT1	pokGT1-Mutante	diese Arbeit
<i>Streptomyces fradiae</i> Tü2717	Wildtyp; Urdamycin A-Produzent	Rohr (1984); Drautz <i>et al.</i> (1986)
Streptomyces fradiae A0	Urdamycin I-, J- und Rabelomycin-Produzent; urdGT1a-, urdGT1b-, urdInt-, urdGT1c-, urdGT2-	Trefzer et al., 2001
Streptomyces fradiae RN- 435	<i>urdR</i> -Mutante Urdamycin I-, J-, M- und Rabelomycin-Produzent	Hoffmeister et al., 2000
Streptomyces fradiae urdSpm	<i>urdS</i> -Mutante keine Urdamycin-Produktion	Domann, 2000
Streptomyces viridochromogenes Tü57	Wildtyp; Avilamycin-Produzent	Hütter, 1962
Streptomyces viridochromogenes GW4	aviG4-Mutante, Gavibamycin A-Produzent	Weitnauer <i>et al</i> ., 2001b
Streptomyces viridochromogenes ∆aviD	aviD-Mutante	diese Arbeit
Bacillus subtilis ATCC 6051	Avilamycin-sensibler Testkeim	Gherna <i>et al.</i> , 1992 (American Type Culture Collection)

2.2 Vektoren

Vektor	Beschreibung	Resistenz- gene	Größe (kb)	Herkunft
Litmus28	<i>lacZ</i> [´] (α-Komplementation), M13-origin, ColE1- origin	bla	2,8	New England Biolabs Evans <i>et al.</i> , 1995
pSK-	<i>lacZ</i> [′] (α-Komplementation), f1(-)-origin, ColE1- origin (= pBluescript SK (-))	bla	3,0	Stratagene Short <i>et al.</i> , 1988
pET28a(+)	<i>oriR</i> pBR322, f1 ori, <i>lacI</i> , T7-Promotor His-Tag-Codone beiderseits der MCS	kmr	5,4	Novagen
pKC1132	konjugativer Vektor pMB1-Replikon, <i>oriT</i> , <i>lacΖ</i> α	aac(3)IV	3,5	Bierman <i>et al</i> ., 1992
pKC1218	pMB1-Replikon, SCP2*-Replikon, <i>oriT</i> , <i>lacZ</i> a	aac(3)IV	5,8	Bierman <i>et al</i> ., 1992
pMUN2	$lacZ'(\alpha$ -Komplementation), f1(-)-origin, ColE1-origin	bla	3,0	Trefzer <i>et al.</i> , 2001
pOJ436	Cosmid-Vektor; (<i>cos</i>)3 ^λ , <i>rep</i> SCP2*	aac(3)IV	9,6	Bierman <i>et al</i> ., 1992
pRSETb	<i>E. coli</i> -Überexpressionsvektor, T7-Promotor, f1(-)-origin, ColE1-origin	bla	2,9	Invitrogen Schoepfer, 1993
pSET152	integrativer Vektor pMB1-Replikon, <i>int</i>	aac(3)IV	5,5	Bierman <i>et al</i> ., 1992
pSET- 1cerm	pSET152 mit <i>ermE up</i> -Promotor; enthält <i>urdGT1c</i>	aac(3)IV	7,0	Hoffmeister <i>et al.</i> , 2001
pSP1	pT7/T3-α19; als Inaktivierungsvektor in <i>S. vir.</i> Tü57 einsetzbar	bla, ermE*	4,5	Pelzer <i>et al.</i> , 1997
pUC19	pMB1-Replikon, <i>oriT</i> , <i>lacΖ</i> α	bla	2,7	New England Biolabs, Yanisch-Perron <i>et al.</i> , 1985)
pUCPU21	pUC19-Derivat; <i>Ncol-</i> ersetzt durch <i>Ndel-</i> Schnittstelle; <i>Nde</i> l aus Vektor entfernt	bla	2,7	P. Hammes und Udo F. Wehmeier
pUWL201	Streptomyceten-Expressionsvektor; konstitutiver <i>ermE</i> up-Promotor, pMB1- Replikon, pIJ101-Replikon	bla, tsr	7,0	Udo F. Wehmeier, Uni Wuppertal; Doumith <i>et al</i> ., 2000
pUZ8002	RK2-Derivat	kmr, tcr		Flett et al., 1997

Tab. 2.2: Übersicht über die in dieser Arbeit verwendeten Vektoren.

2.3 Plasmide und Cosmide

Tab. 2.3: Übersicht über die in dieser Arbeit verwendeten Plasmide sowie Plasmide, die im Rahmen dieser Arbeit generiert wurden.

Plasmid	Beschreibung	Resistenz- gene	Größe (kb)	Herkunft
1K3P100	5,1 kb- <i>Pst</i> l-Fragment aus Cosmid 1K3 aus <i>S. antibioticus</i> Tü6040 in pSK-; enthält <i>simB7</i>	bla	8,1	Axel Trefzer
Cos10 (≈ pURD10)	Cosmid aus <i>S. fradiae</i> Tü2717 in pKC505	aac(3)IV		Schneider, 1995 Richardson <i>et al.</i> , 1987 (pKC505)
P2S11	ca. 7,7 kb-Sacl-Fragment aus S. viridochromogenes Tü57 in pSK-	bla	10,7	Gabriele Weitnauer
pAF1/ <i>avi</i> S	basiert auf pUWL201; enthält aviS zur Expression mit C-terminalem His-Tag	bla, tsr	8,0	eigenes Konstrukt
pAF1/ <i>aviT</i>	basiert auf pUWL201; enthält <i>aviT</i> zur Expression mit C-terminalem His-Tag	bla, tsr	7,6	eigenes Konstrukt

Plasmid	Boschroibung	Resistenz-	Größe	Horkunft
Flasilliu	Deschleibung	gene	(kb)	Herkullit
pAF1/simB7	basiert auf pUWL201; enthält s <i>imB7</i> zur Expression mit C-terminalem His- Tag	bla, tsr	8,1	eigenes Konstrukt
pAF1/urdR	basiert auf pUWL201; enthält <i>urdR</i> zur Expression mit C-terminalem His-Tag	bla, tsr	7,35	eigenes Konstrukt
pAF2/ <i>urd</i> S	basiert auf pUWL201; enthält <i>urdS</i> zur Expression mit N-terminalem His-Tag	bla, tsr	8,0	eigenes Konstrukt
pAF3/urdS	basiert auf pUWL201; enthält <i>urdS</i> zur Expression mit N-terminalem His-Tag und Thrombin-Erkennungssequenz; Entfernung des His-Tags möglich	bla, tsr	8,1	eigenes Konstrukt
pBSK-4E5	ca. 4,5 kb- <i>Eco</i> RI-Fragment aus <i>S. viridochromogenes</i> Tü57	bla	7,5	Gabriele Weitnauer
pSET152/aviD	aviD in pSET152	aac(3)IV	10,8	eigenes Konstrukt
pSETerm	basiert auf pSET-1cerm (<i>urdGT1c</i> wurde ausgeschnitten und das Plasmid religiert)	aac(3)IV	5,9	eigenes Konstrukt
pSETerm/ <i>aviD</i>	<i>aviD</i> in pSET-1cerm (<i>urdGT1c</i> wurde zuvor durch <i>Nde</i> I-/ <i>Xba</i> I-Restriktion entfernt)	aac(3)IV	7,1	eigenes Konstrukt
pSETerm/ <i>susy</i>	<i>sus1_Soltu</i> in pSET-1cerm (<i>urdGT1c</i> wurde zuvor durch <i>Ndel-/Bgl</i> II- Restriktion entfernt)	aac(3)IV	8,3	eigenes Konstrukt
pSK-/ <i>urdR</i>	enthält 2,3 kb- <i>Pst</i> l-Fragment (Fragment C) aus <i>S. fradiae</i> Tü2717	bla	5,3	Hoffmeister <i>et al</i> ., 2000
pSP1/aviD-S	aviD mit Deletion in pSP1	bla	7,1	eigenes Konstrukt
pTSSuc	sus1_Soltu über Ncol und BamHI in pET28a (Novagen) kloniert	kan	7,7	Thomas Schumacher
pUC19/ <i>aviD</i>	Klonierungsplasmid mit aviD	bla	5,5	eigenes Konstrukt
pUC19/aviD-S	SacII-Deletion (291 bp) in aviD	bla	5,2	eigenes Konstrukt

Tab. 2.4: Übersicht über die in dieser Arbeit verwendeten Cosmide. Die Cosmide enthalten genomische DNA des Stammes S. diastatochromogenes Tü6028 und wurden unter Verwendung des Vektors pOJ436 erstellt. Die durch Fettdruck hervorgehobenen Cosmide wurden für die Sequenzierung verwendet. AC = Anschlußcosmid

Cosmid	Cosmid Nr. Beschreibung		Größe (kb)	Resistenz- gen	Herkunft
CB30-6D20		"mittleres" Cosmid; hybridisiert mit 4,6- Dehydratase- und PKS-II-Sonde	~47		
CB30-1J21	1	AC links; hybridisiert mit 30-6D20-L-Sonde			
CB30-4E08	2	AC links; hybridisiert mit 30-6D20-L-Sonde	~35		
CB30-5P07	3	AC links; hybridisiert mit 30-6D20-L-, PKS-II- und 4,6-Dehydratase-Sonde			
CB30-6107	4	AC links; hybridisiert mit 30-6D20-L- und PKS-II- Sonde		aac(3)IV	Combinature
CB30-6M07	5	AC links; hybridisiert mit 30-6D20-L-Sonde			Biophann AG
CB30-2A21	6	AC rechts; hybridisiert mit 30-6D20-R-, PKS-II-30- und 4,6-Dehydratase-Sonde	~41		
CB30-5108	7	AC rechts; hybridisiert mit 30-6D20-R-, PKS-II-30- und 4,6-Dehydratase-Sonde			
CB30-6K13	8	AC rechts; hybridisiert mit 30-6D20-R-, PKS-II-30- und 4,6-Dehydratase-Sonde			

2.4 Oligonukleotide

Tab. 2.5: Die nachfolgend aufgelisteten Oligonukleotide wurden von der Operon Biotechnologies GmbH (Köln) bezogen. Einige Primer enthalten Erkennungssequenzen für Restriktionsendonukleasen, die in der Sequenz kursiv und fett dargestellt sind.

Bezeichnung	g Beschreibung	Sequenz 5'→3'	Länge in nt
4,6-DH-for	unspezif.Primerpaar zur	CSGGSGSSGCSGGSTTCATSGG	22
4,6-DH-rev	Amplifiz. einer 4,6-DH-Sonde	GGGWRCTGGYRSGGSCCGTAGTTG	24
Ap1	Primerpaar, das am Apramycin-Resistenzgen	AGCTTCTCAACCTTGGGG	18
Ap2	bindet (z.B. in pSET152)	TCCGCCAAGGCAAAGCGC	18
aviD-BS	Sequenzier-Primer	GCACCACCGTGTCCGGGC	18
aviD-F1	Primer mit <i>Hin</i> dIII- Schnittstelle	GCGCGG AAGCTT CTGGACCCGGGC	24
aviD-R1	Primer mit <i>Bam</i> HI- Schnittstelle	GCGTC GGATCC AGATTGGTCAGCTCG	26
aviD-F2	spezif. Primer zur Prüfung	GGGAAAACCTGAAAAACACGC	21
aviD-R2	möglicher aviD-Mutanten	TCTCGCATGTTCCCGTAAGC	20
aviD_ <i>Nde</i> l	Primer mit Ndel-Schnittstelle	AAACGACCT CATATG ACGG	19
aviD_Xbal	Primer mit Xbal-Schnittstelle	CTGCCG TCTAGA ATGTTCC	19
aviS-F2	Primer mit <i>Hin</i> dIII- Schnittstelle	GCCGGCG AAGCTT TTCTCGAACAGG	25
aviS-R2	Primer mit Xbal-Schnittstelle	CGTTCTTCATG TCTAGA CCAACTCTGC	27
aviT-F2	Primer mit <i>Hin</i> dIII- Schnittstelle	GCCCGAAGCTTGCTCGCCTGCCTG	24
aviT-R2	Primer mit Xbal-Schnittstelle	GCGCTCG TCTAGA TCGGCCATCTGC	25
ET28a-F1	Primer mit <i>Eco</i> RI- Schnittstelle, PCR-Produkt	TCCCC GAATTC AATAATTTTGTTTAAC	27
ET28a-R2	zur Herstellung des Vektors pAF3/ <i>urdS</i>	AGAAAGGAAGGGAAGAAAGCGAAAGG	26
L_213_for	Primerpaar für pSK/213,	GGAGATGGTGGACTACATGG	20
L_213_rev	PCR-Produkt für Sequenzierung	TCCGTGAACGGGCTGATGC	19
L_22_for	Primerpaar für pSK/22,	AAGGACGGTGTGGGCGCG	18
L_22_rev	PCR-Produkt für Sequenzierung	AGCGAGGAGTTCCGCAACC	19
L_X3_for	Primerpaar für Cosmid 30-6D20,	TACGACCTCGACTTCGCCC	19
L_X3_rev	PCR-Produkt für Sequenzierung	TTCATCGAACCTCCAGGTCC	20
P-aviD-for	Primer mit <i>Hin</i> dIII-Schnitt- stelle zur Amplifizierung des	GGCCAA AAGCTT CTGGAAGCTGC	23
P-aviD-rev	<i>aviD</i> -Promotors und RBS Primer mit <i>Nd</i> el-Schnittstelle	CGCCTT CATATG CCACACCTTGC	23
PDHF	Primer mit <i>Hind</i> III- Schnittstelle	GGTCCG AAGCTT TCACCCCATCACAG	26
PDHR	Primer mit <i>Spe</i> l- und <i>Xba</i> l- Schnittstelle und 6 His- Codone	TAGTAG ACTAGT TCA GTGATGGTGGTGATGGTG<i>TC</i> <i>TAGA</i>GATACCGGACGGCGGAG	52
PKSII-for	unspezif.Primerpaar zur	TSGCSTGCTTCGAYGCSATC	20
PKSII-rev	Amplifiz. einer PKSII-Sonde	TGGAANCCGCCGAABCCGCT	20
pokGT-for	Primerpaar zur Prüfung auf	ACGCGATCGCCGGACTGC	18
pokGT-rev	Single-/Doppel-Crossing-over von pokGT1	GCACCGAACTGCTGCTGAA	19

Bezeichnung	Beschreibung	Sequenz 5'→3'	Länge in nt
pokGT2-for	Primerpaar zur Prüfung auf	AACGGTAAGGAGGTTCAGG	19
pokGT2-rev	Single-/Doppel-Crossing-over von pokGT2	AAGAGTCCGCACTCATAGC	19
simB7-F1	Primer mit <i>Hin</i> dIII- Schnittstelle	AAGCTT CACTGAATGGGGAG	20
simB7-R1	Primer mit Xbal-Schnittstelle	TCTAGAGACCAGCTCGGC	19
urdS-F1	Primer mit <i>Eco</i> RI- und <i>Bam</i> HI-Schnittstelle und 6 His-Codone	GCCCG GAATTC TGAACACGGGAGCCTTCTGATG CA CCATCACCACCATCACGGATCCCTTTCTGAAAGCC TTCTCG	76
urdS-R1	Primer mit Xbal-Schnittstelle	CCACCTCTAGACTCATCGGCTGTTCACCGC	30
urdS3-B	Primerpaar zur Prüfung der	TGACCGGCTGGACCCAGCCCC	21
urdS5-B	urdS-Mutante	GTGAGCCGTCCGTCACCGCCC	21

Tab. 2.6: Die nachfolgenden Oligonukleotide wurden als Primer zur PCR-basierten Synthese des Gens *susy_GC* eingesetzt und von Biomers (Ulm) bezogen. Erkennungssequenzen für Restriktionsendonukleasen sind kursiv und fett dargestellt sind.

Bezeichnung	Sequenz 5'→3'	Länge in nt
A1	CTGCAG AACGTCCTGCGGAAGGCCG	25
A2	ATGATCAGGTACTCCTCGGCCTTCCGC	27
AB3	AGGAGTACCTGATCATGCTGCCGCCG	26
AB4	CGAAGTACGGGGTGTCCGGCGGCAGC	26
BC5	ACCCCGTACTTCGAGTTCGAGCACAAG	27
BC6	CCGATCTCCTGGAACTTGTGCTCGAACT	28
CD7	TTCCAGGAGATCGGCCTCGAGAAGGGC	27
CD8	GGTGTCGCCCCAGCCCTTCTCGAGG	25
DE9	GGGCGACACcGCCGAGCGCGTCCTCG	26
DE10	GCATGCAGACCATTTCGAGGACGCGC	26
EF11	AATGGTCTGCATGCTGCTGGACCTGC	26
EF12	GTCCGGCGCCTCCAGCAGGTCCAGCA	26
FG13	GGCGCCGGACTCGTGCACGCTGGAGA	26
FG14	GCGGCCCAGGAACTTCTCCAGCGTGC	26
GH15	CCTGGGCCGCATCCCGATGGTCTT	24
GH16	GGATGACGACGTTGAAGACCATCGGGAT	28
HI17	CAACGTCGTCATCCTGTCCCCGCACG	26
HI18	CCTGCGCGAAGTAGCCGTGCGGGGAC	26
IJ19	TACTTCGCGCAGGAGAACGTCCTGGG	26
IJ20	GGTGTCCGGGTAGCCCAGGACGTTCT	26
JK21	CTACCCGGACACCGGCGGCCAGGTCG	26
JK22	GGTCCAGGATGTAGACGACCTGGCCG	26
KL23	TCTACATCCTGGACCAGGTGCCGGCC	26
KL24	GCATCTCGCGCTCCAGGGCCGGCACC	26
LM25	AGCGCGAGATGCTGAAGCGCATCAAG	26
LM26	CAGGCCCTGCTCCTTGATGCGCTTCA	26
MN27	GAGCAGGGCCTGGACATCATCCCG	24
MN28	ACGATCAGGATCCGCGGGATGATGTCCA	28
NO29	CGGATCCTGATCGTCACCCGCCTGCT	26
NO30	CCCACCGCGTCCGGCAGCAGGCGGGT	26
OP31	GACGCGGTGGGCACCACCTGCGGCCA	26
OP32	ACCTTCTCGATCCGCTGGCCGCAGGT	26
PQ33	CGGATCGAGAAGGTGTACGGCGCCGA	26
PQ34	GAGGATGTGGGAGTGCTCGGCGCCGT	26
QR35	GCACTCCCACATCCTGCGCGTCC	23

Bezeichnung	Sequenz 5'→3'	Länge in nt
QR36	CGGTCCGGAACGGGACGCGCAGGATG	26
RS37	CGTTCCGGACCGAGAAGGGCATCGTC	26
RS38	GAGATCCACTTGCGGACGATGCCCTTCT	28
ST39	CGCAAGTGGATCTCGCGGTTCGAGGT	26
ST40	CCATGTACGGCCAGACCTCGAACCGC	26
TU41	TGGCCGTACATGGAGACCTTCATCGAGG	28
TU42	CCTTGGCGACGTCCTCGATGAAGGTCT	27
U43	ACGTCGCCAAGGAAATCTCCGCCGAG	26
U44	CTGCAG CTCGGCGGAGATT	19
A45-2	GACCGCAAGGTGTGG CATATG GC	23
A46-2	AGCACGCGCTCGGC CATATG CCACAC	26
AB47	GAGCGCGTGCTGACCCGCGTCCACTC	26
AB48	CCCGCTCGCGCAGGGAGTGGACGCGG	26
BC49	CGCGAGCGGGTCGACGCCACCCTGGC	26
BC50	TCGTTGCGGTGGGCGGCCAGGGTGGC	26
CD51	CCACCGCAACGAGATCCTGCTGTTCC	26
CD52	CGATGCGGGACAGGAACAGCAGGATC	26
DE53	TGTCCCGCATCGAGTCCCACGGCAAG	26
DE54	CTTCAGGATGCCCTTGCCGTGGGA	24
EF55	GGCATCCTGAAGCCCCACGAGCTGC	25
EF56	GTCGAACTCGGCCAGCAGCTCGTGGG	26
FG57	GCCGAGTTCGACGCCATCCGCCAGGA	26
FG58	AGCTTGTTCTTGTCGTCCTGGCGGATG	27
GH59	CGACAAGAACAAGCTGAACGAGCACGC	27
GH60	GCAGCTCCTCGAAGGCGTGCTCGTTC	26
HI61	TTCGAGGAGCTGCTGAAGTCCACCCAG	27
HI62	GACGATGGCCTCCTGGGTGGACTTCA	26
1.163	GAGGCCATCGTCCTGCCGCCG	21
IJ64	ATGGCCAGGGCGACCCACGGCGGCAG	26
JK65	CGCCCTGGCCATCCGCCTGCGGCCGG	26
JK66	ATGTACTCCCAGACGCCCGGCCGCAG	26
KL67	CGTCTGGGAGTACATCCGGGTCAACGT	27
KL68	CGACCAGGGCGTTGACGTTGACCCGG	26
LM69	CGCCCTGGTCGTCGAGGAGCTGTCCG	26
LM70	AGGTACTCCGGGACGGACAGCTCCTC	26
MN71	TCCCGGAGTACCTCCAGTTCAAGGAAGAG	29
MN72	GTCGACCAGCTCTTCCTTGAACTGG	25
NO73	CTGGTCGACGGCGCCTCCAACGGG	24
NO74	TCCAGGACGAAGTTCCCGTTGGAGGC	26
OP75	AACTTCGTCCTGGAGCTGGACTTCGAAC	28
OP76	AGGCGGTGAACGGTTCGAAGTCCAGC	26
PQ77	CGTTCACCGCCTCCTTCCCCAAGCCG	26
PQ78	GACTTGGTCAGGGTCGGCTTGGGGAA	26
0R79	ACCCTGACCAAGTCCATCGGCAACGG	26
QR80	TCAGGAACTCGACGCCGTTGCCGATG	26
RS81	CGTCGAGTTCCTGAACCGCCACCTGT	26
RS82	GAACATCTTCGCGGACAGGTGGCGGT	26
ST83	CGAAGATGTTCCACGACAAGGAGTCCATGA	30
ST84	CAGCAGCGGGGTCATGGACTCCTTGT	26
TU85	CCCCGCTGCTGGAGTTCCTGCGCGCC	26
TU86	TGCCCTTGTAGTGGTGGGCGCGCAGG	26
UV87	CCACTACAAGGGCAAGACCATGATGCTGA	29
UV88	GGATGCGGTCGTTCAGCATCATGGTCT	20
V89	ACGACCGCATCCAGAACTCCAACACCC	27
V90	CTGCAG GGTGTTGGAGTTCT	20

Medien und Medienzusätze 2.5

2.5.1 E. coli-Medium

Für die Anzucht von E. coli-Bakterien in Flüssigkultur oder auf Festmedium wurde LB-Medium verwendet. Falls nötig wurde dem abgekühlten autoklavierten Medium eine Antibiotikum-Lösung zugesetzt.

LB-Medium	10 g/l	Trypton	
	5 g/l	Hefeextrakt	
	5 g/l	NaCl	
	15 g/l	Agar für Festmedium	pH 7,5 mit NaOH einstellen

Um eine Blau-Weiß-Selektion der mit einem entsprechenden Plasmid transformierten E. coli-Zellen durchzuführen, wurden die LB-Nährplatten jeweils mit 100 µl einer IPTG-Lösung (100 mM) und 20 µl einer X-Gal-Lösung (50 mg/ml) supplementiert.

(IPTG in Wasser lösen, steril filtrieren und bei 4 °C aufbewahren; X-Gal in N,N'-Dimethylformamid lösen und bei -20 °C lagern.)

2.5.2 Streptomyceten-Medien

Je nach Streptomyceten-Stamm und abhängig davon, ob die Bakterien beispielsweise zur Sekundärstoffproduktion angeregt oder zur Protoplastierung verwendet werden sollten, waren unterschiedliche Fest- und Flüssigmedien erforderlich. Falls nötig wurde den abgekühlten autoklavierten Medien eine Antibiotikum-Lösung zugesetzt.

CRM-Medium (Anzuchtmedium für die Protoplastierung von S. fradiae Tü2717)

•		Q	,	
103 g/l	Saccharose			
20 g/l	Tryptic Soy Broth			
10 g/l	Hefeextrakt			
10,12 g/l	$MgCl_2 \times 6 H_2O$			pH 7,0 mit 1 M NaOH einstellen

CRM-Medium wird mit Leitungswasser angesetzt. (Nach dem Autoklavieren wird 0,1 ml einer sterilen 1 M CaCl₂-Lösung pro 10 ml Medium zugesetzt.)

HA-Medium

10 g/l	Malzextrakt
4 g/l	Hefeextrakt
4 g/l	Glucose
$21 \alpha'$	Ager für Feetm

Agar für Festmedium 21 g/l CaCl₂

[1 mM

(Nach dem Autoklavieren hinzugeben; bei Verwendung von Leitungswasser nicht erforderlich)] Minimalmedium (Brawner et al., 1985) 6 g $(NH_4)_2SO_4$ 6 g K₂HPO₄ 1 g KH₂PO₄ 1,06 g MgCl₂ × 6 H₂O 2 g NaCl pH 7,0 einstellen; H₂O bidest. ad 1000 ml 0,002 g FeCl₃ × 6 H₂O Nach dem Autoklavieren steril zusetzen: 1,25 ml Glucose (40 % (w/v)) 180 µl CaCl₂ (1 M)

Zur Nutzung von Saccharose als C-Quelle wurde das Minimalmedium nach der vorliegenden Rezeptur hergestellt und anstelle der Glucoselösung je Liter Medium 1 ml Saccharoselösung (25 % (w/v)) zugesetzt.

MS-Medium	20 g/l	Mannitol
	20 g/l	Sojamehl
	20 a/l	Adar

mit Leitungswasser auf 1 l auffüllen; Flüssigkultur pH 7,6 mit NaOH einstellen

NL111/V-Medium (Produktionsmedium für S. fradiae Tü2717)

- 20 g/l Lab Lemco 100 g/l Malzextrakt
- 10 g/l CaCO₃

pH 7,2 einstellen

Das Medium wird mit Leitungswasser angesetzt, in 500 ml-Erlenmeyerkolben mit einer Schikane gefüllt (je 100 ml), Watte locker stopfen! Für Anzuchten im Kleinstmaßstab wurden je 20 ml des Mediums in 100 ml-Kolben gefüllt.

S-Medium (Anzuchtmedium für die Protoplastierung von S. viridochromogenes Tü57)

Lösung 1	103 g/l	Saccharose	
	20 g/l	Tryptic Soy Broth	
	4 g/l	Pepton	
	4 g/l	Hefeextrakt	
	4 g/l	K ₂ HPO ₄	
	2 g/l	KH ₂ PO ₄	
	10 g/l	Glycin	H ₂ O bidest. ad 800 ml
Lösung 2	10 g/l	Glucose	
	0,5 g/l	$MgSO_4 \times 7 H_2O$	H ₂ O bidest. ad 200 ml

Beide Lösungen werden getrennt autoklaviert und unter sterilen Bedingungen vereinigt.

SG-Medium (Produktionsmedium für S. viridochromogenes Tü57)

D-Glucose	
Pepton	
∟-Valin	
CaCO ₃	
CoCl ₂	pH 7,2 einstellen
	D-Glucose Pepton L-Valin CaCO ₃ CoCl ₂

Das Medium wird mit Leitungswasser angesetzt, in 300 ml-Erlenmeyerkolben mit vier Schikanen füllen (je 100 ml), Watte locker stopfen!

TSB-Medium 30 g/l Tryptic Soy Broth mit VE-Wasser auf 1 Liter auffüllen

2.5.3 Puffer und Medien für die Streptomyceten-Protoplastentransformation

NB-Weichagar (zum Überschichten mit zugesetztem Antibiotikum)

8 g Nutrient Broth

5 g Agar

H₂O bidest. ad 1000 ml

P-Puffer (Protoplastierungspuffer für Streptomyceten; Thompson et al., 1982)

		Endkonzentration
2 ml	Spurenelemente-Lösung	0,2 % (v/v)
100 ml	TES pH 7,2 (250 mM)	25 mM
10 ml	MgCl ₂ × 6 H ₂ O (1 M)	10 mM
10 ml	K ₂ SO ₄ (140 mM)	1,4 mM
10 ml	KH ₂ PO ₄ (40 mM)	0,4 mM
10 ml	CaCl ₂ x 2 H ₂ O (250 mM)	2,5 mM
103 g	Saccharose (H ₂ O bidest. ad 858 ml)	

Die Lösungen werden einzeln angesetzt und nach dem Autoklavieren steril vereinigt. Dabei wird die CaCl₂-Lösung zuletzt zugegeben. Zur Protoplastierung wird dem P-Puffer zur Auflösung der Zellwand Lysozym zugesetzt. Für *S. fradiae*-Stämme werden 3,5 mg/ml und für *S. viridochromogenes*-Stämme werden 2 mg/ml Lysozym eingesetzt.

R2YE-Medium (modifiziert nach Hopwood et. al., 1999)

Lösung A	22 g	Agar	
	10,12 g	$MgCl_2 \times 6 H_2O$	
	10 g	Glucose	
	3 g	Prolin	
	2,95 g	$CaCl_2 \times 2 H_2O$	
	0,25 g	K ₂ SO ₄	
	0,1 g	Casaminosäuren	H ₂ O bidest. ad 500 ml
Lösung B	5,73 g 5 g	TES Hefeextrakt	
	103 g	Saccharose	pH 7,4 mit NaOH einstellen; H_2O bidest. ad 490 ml
Lösung C	10 ml	KH ₂ PO ₄ (0,5 % (w/v))	
Lösung D	2 ml	Spurenelemente-Lösung	

Alle Lösungen werden getrennt autoklaviert und unter sterilen Bedingungen vereinigt. Die R2YE-Platten sollten nach dem Gießen und vor der Verwendung gut getrocknet werden.

R3-Weichagar (zum Einbetten der Protoplasten auf R2YE-Platten)

171 g	Saccharose
10 g	Glucose
4 g	Pepton
0,5 g	KCI
8,1 g	$MgCl_2 \times 6 H_2O$
1 M	$CaCl_2 \times 2 H_2O$
8 g	Agar

H₂O bidest. ad 860 ml

Nach dem Autoklavieren folgte die Zugabe der einzeln autoklavierten Komponenten:

40 ml K₂HPO₄ (0,5 %) 100 ml TES (250 mM; pH 7,0)

Für das Überschichten der Regenerationsplatten sollte der R3-Agar eine Temperatur von ca. 40 °C haben.

Spurenelemente-Lösung (für R2YE-Medium, P- und T-Puffer; nach Hopwood et al., 1999)

740 µM	FeCl ₃ × 6 H ₂ O
59 µM	$CuCl_2 \times 4 H_2O$
50 µM	MnCl ₂ × 4 H ₂ O
30 µM	ZnCl ₂
26 µM	Na ₂ B ₄ O ₇ × 10 H ₂ O
8 µM	(NH ₄) ₆ Mo ₇ O ₂₄ × 4 H ₂ O

Die Lösung wird mit H₂O bidest. angesetzt und autoklaviert.
T-Puffer (Transformationspuffer; nach Thompson *et al.*, 1982)

		Endkonzentration
1,7 ml	H ₂ O steril	
5 ml	PEG 1000 (Roth) (50 % (w/v))	25 %
1 ml	Saccharose (25 % (w/v))	2,5 % (w/v)
1 ml	Tris-Maleat (0,5 M; pH 8,0)	50 mM
30 µl	Spurenelemente-Lösung	0,3 % (v/v)
0,1 ml	K ₂ SO ₄ (140 mM)	1,4 mM
0,1 ml	KH2PO4 (40 mM)	0,4 mM
0,1 ml	MgCl ₂ (1 M)	10 mM
1 ml	CaCl ₂ (1 M)	100 mM

Die Lösungen werden getrennt autoklaviert und unter sterilen Bedingungen vereinigt. Der Puffer wird bei -20 °C aufbewahrt.

2.5.4 Bacillus subtilis-Medien

Sporulationsmedium

1,0 mg FeCl₃ × 6 H₂O 17,73 mg $MnCl_2 \times 4 H_2O$ NH₄CI 540,0 mg 105,0 mg Na_2SO_4 87,0 mg KH₂PO₄ 257,9 mg $CaCl_2 \times 2 H_2O$ 96,0 mg NH_4NO_3 8,3 mg $MgCl_2 \times 6 H_2O$ 2,0 g Glucose 1,9 g Na-L-Glutamat \times 1 H₂O

pH 7,1 einstellen; H₂O bidest. ad 1000 ml, autoklavieren

DM-Medium (nach Davis und Mingioli, 1950)

7,0 g/l K₂HPO₄ 3,0 g/l KH₂PO₄ 0,1 g/l NaCl 0,1 g/l MgSO₄ × 7 H₂O 1,0 g/l (NH₄)SO₄ 10 ml/l Glucose (40 %)

nach dem Autoklavieren steril zugeben

2.5.5 Antibiotika-Stammlösungen

Abhängig vom verwendeten Vektor in den jeweiligen Versuchen wurden unterschiedliche Antibiotika eingesetzt, die in Tab. 2.7 zusammengefaßt sind. Die Antibiotika wurden dem ausreichend abgekühlten Medium (ca. 50 °C) nach dem Aut oklavieren zugesetzt.

Tab. 2.7: Übersicht über die verwendeten Antibiotika. Angegeben sind neben den Endkonzentrationen im Medium auch die Konzentrationen der angesetzten Stammlösungen. Alle Antibiotika wurden im entsprechenden Lösungsmittel gelöst. Die wäßrigen Stammlösungen wurden steril filtriert und zu 1-2 ml-Aliquots abgefüllt. (Thiostrepton nicht steril filtrieren!) Die Lagerung erfolgte bei -20 °C.

Antibiotikum	Konzentration der Stammlösung	Endkonzentration im Medium
Apramycin	100 mg/ml H ₂ O	25 μg/ml für HA-Platten (<i>Strept.</i>), 100 μg/ml für LB-Medium (<i>E. coli</i>)
Carbenicillin	50 mg/ml H ₂ O	50 μg/ml
Chloramphenicol	34 mg/ml EtOH	34 µg/ml
Erythromycin	25 mg/ml EtOH	50 µg/ml
Fosfomycin	200 mg/ml H ₂ O	25-30 μg/ml bzw. 1 mg/Platte (Festmedium)
Kanamycin	30 mg/ml H ₂ O	30 µg/ml
Tetracyclin	5 mg/ml EtOH (70 %)	10 μg/ml
Thiostrepton	50 mg/ml DMSO	25 μg/ml

2.6 Chemikalien und Enzyme

Amersham Biosciences Europe (GE Healthcare), Freiburg: DNase I, Klenow-Fragment der DNA-Polymerase I, Protein-Längenstandard, Restriktionsendonukleasen

Becton Dickinson, Franklin Lakes, NJ, USA: Agar, Casaminosäuren, Hefeextrakt, Malzextrakt, Nutrient Broth, Pepton, Stärke, Tryptic Soy Broth, Trypton

Bio-Rad, Richmond CA, USA: Low Molecular Weight Standard (14,4-97 kDa)

Fluka, Buchs, Schweiz: Apramycin, Chloramphenicol, Erythromycin, Kanamycin, Lysozym (aus Hühnereiweiß), Thiostrepton

Macherey-Nagel, Düren: NucleoSpin® Extract Kit II

Merck, Darmstadt: Chloroform, Dikaliumhydrogenphosphat, DMSO, Ethanol, Kaliumdihydrogenphosphat, Methylenblau, Xylencyanol

MBI Fermentas, Vilnius, Litauen: Restriktionsendonukleasen, Restriktionspuffer

New England Biolabs, Beverly, MA, USA: Restriktionsendonukleasen, T7-Endonuklease I

Oxoid, Unipath Ltd., Basingstoke, GB: Lab Lemco (Fleischextrakt)

Promega, Madison, WI, USA: 1 kb-Längenstandard, BSA, CIAP, dNTP-Mix, *Pfu*-DNA-Polymerase, Restriktionsendonukleasen, RNase A, T4-DNA-Ligase, T4-DNA-Polymerase, *Taq*-DNA-Polymerase, Wizard[®] *Plus* Minipreps DNA Purification System

Qiagen, Hilden: Ni-NTA-Agarose (Suspension), Plasmid Midi Kit (Tip100-Säulen), RNase A

Roche Diagnostics, Hoffmann-La Roche AG, Basel, Schweiz: DIG-High Prime DNA Labeling and Detection Starter Kit II, DIG-markierter DNA-Längenstandard

Roth, Karlsruhe: Aceton, Acetonitril, Acrylamid/Bisacrylamid, Calciumchlorid, Carbenicillin, Dichlormethan, Eisessig, Ethidiumbromid, Ethylacetat, Glucose, Glycerin, Imidazol, IPTG, Isopropanol, Kaliumacetat, Kaliumchlorid, Kaliumsulfat, L-Prolin, Magnesiumchlorid, Mannit, Membranfilter ($\emptyset = 0.2 \,\mu$ m, steril; $\emptyset = 0.45 \,\mu$ m), Methanol, Natriumhydroxid, Nickelsulfat, N,N'-Dimethylformamid, PEG 1000, Phenol/Chloroform (pH 8,0), Saccharose, TEMED, TES, Tris, Tris-Maleat, Tween 80, X-Gal

Serva, Heidelberg: Coomassie[®] Brilliant Blau G250

Sigma-Aldrich Co., St. Louis, MO, USA: β-Mercaptoethanol, APS, Bromphenolblau, EDTA, Fosfomycin, L-Glutamin, L-Glycin, Tetracyclin

Stratagene, La Jolla, CA, USA: Gigapack[®] III Gold Packaging Extract

Südzucker, Mannheim: Saccharose

USB, Cleveland, OH, USA: Agarose ultrapure, Streptomycin

Walter Schoenenberger Pflanzensaftwerk GmbH & Co. KG, Magstadt: Hensel Voll-Soja

2.7 Geräte und Verbrauchsmaterialien

Agilent Technologies Deutschland GmbH, Waldbronn: LC-MS-Anlage mit folgenden Komponenten: Autosampler (G1313A), Degasser (G1322A), Diodenarraydetektor (G1315B), Fraktionssammler (G1364A), Massendetektor SL (G1946D), Pumpe (isokratisch; G1310A), Pumpe (quarternär; G1311A), Säulenofen (G1316A), Splitter (G1968D)

Amersham Biosciences Europe (GE Healthcare), Freiburg: Hybridisierungsofen, Image Master VDS (Video-Dokumentations-System), Sephadex[™] G-25 Säulen, Sephadex[™] LH-20 (Feststoff)

Beckman Coulter, Fullerton CA, USA: Zentrifuge Modell J2-21M

Bio-Rad, Richmond CA, USA: Mini-Protean-3-Elektrophorese-Zelle

Eppendorf, Hamburg: 2 ml-Reaktionsgefäße, Zentrifugen 5417C und 5417R, Mastercycler[®] ep gradient

H. Saur Laborbedarf, Reutlingen: Vakuum-Konzentrator BA-VC-300H

Heidolph Instruments, Schwabach: Magnetrührer MR 3002, Rotationsverdampfer Laborota 4000, Schüttler Rotamax 120
Hewlett-Packard, Palo Alto CA, USA: Diode Array Spectrophotometer 8452A
Infors AG, Bottmingen, Schweiz: Inkubationsschüttler (Multitron)
Macherey-Nagel, Düren: Antibiotika-Testblättchen (MN 827 ATD, Ø 6 mm)
Merck, Darmstadt: Kieselgel 60 F₂₅₄
PerkinElmer (Applied Biosystems), Norwalk, CT, USA: GeneAmp 2400 Thermocycler
Schleicher und Schuell, Dassel: Faltenfilter
Schott Instruments, Mainz: Labor-pH-Meter CG 842
Thermo Spectronic (Thermo Electron Corporation), Rochester, NY, USA: French[®] Pressure Cell
Press
Vacuubrand, Wertheim: Chemie-Vakuumpumpstand PC 2002 VARIO
Waters GmbH, Eschborn: 717plus Autosampler, 515 HPLC-Pumpe, 2996 PDA-Detektor

Whatman, Maidstone, UK: 3MM-Papier, Glasfaserfilter

2.8 Software

Artemis Release 5 (Sanger Centre; Rutherford et al., 2000; http://www.sanger.ac.uk/Software/Artemis/)	Auswertung von Sequenzdaten
BLAST Version 2.2.11 (Altschul <i>et al.</i> , 1997; http://www.ncbi.nlm.nih.gov/blast/index.html)	Vergleich von DNA- und Protein- sequenzen mit Datenbanken-Sequenzen
Chemstation Software, Version Rev. A 09.03 (Agilent Technologies Deutschland GmbH, Waldbronn)	Steuerung der LC-MS-Anlage und Auswertung der Meßdaten
Chromas 2.24 (Technelysium Ltd., Tewantin, Australien)	Betrachtung von Sequenzier-
Clone Manager Version 4.1 (Scientific & Educational Software, Durham, NC, USA)	Erstellen von Plasmidkarten; virtuelle Klonierung
DNASIS für Windows (Hitachi Software Engineering, San Bruno, CA, USA), Version 2.1	Auswertung von Sequenzdaten
ISIS Draw Version 2.4 (MDL Information Systems)	Erstellen von Strukturformeln
SEARCHPKS (Yadav <i>et al</i> ., 2003; http://www.nii.res.in/searchpks.html)	Analyse von Aminosäuresequenzen
TMHMM-Server Version 2.0 (Krogh <i>et al.</i> , 2001; http://www.cbs.dtu.dk/services/TMHMM-2.0/)	Hydrophobizitäts-Blot zur Vorhersage von Protein-Transmembrandomänen

2.9 Mikrobiologische Methoden

2.9.1 Konzentrationsbestimmung von Bakterienkulturen

Die Konzentrationsbestimmung von Suspensionskulturen erfolgte photometrisch. Dabei entspricht eine optische Dichte von 1,0 bei einer Wellenlänge von 623 nm (OD_{623}) ca. 4 × 10⁷ Zellen/ml.

2.9.2 Kultivierung und Anzucht von E. coli

E. coli-Kulturen wurden nach Sambrook *et al.* (1989) in LB-Medium bei 37 °C über Nacht angezogen. Dem Medium wurde gemäß des vorliegenden Selektionsmarkers das entsprechende Antibiotikum zugesetzt (s. Abschnitt 2.5.5).

Zur Kultivierung auf Festmedium wurde eine Einzelkolonie oder eine Dauerkultur mit der Impföse ausgestrichen oder ein Transformationsansatz wurde ausplattiert. Flüssigkulturen wurden im Schüttler bei 180 rpm kultiviert. Für Plasmidisolationen im Mini-Maßstab wurden Kulturen mit 1-10 ml Medium angeimpft. Für Plasmidpräparationen im Midi-Maßstab wurden 100 ml Medium in einem 300 ml-Erlenmeyerkolben (mit einer Schikane) mit 1 ml einer Vorkultur inokuliert und angezogen.

Zur Konservierung über einen längeren Zeitraum wurden Dauerkulturen von wichtigen *E. coli*-Stämmen angelegt. Dazu wurden 700 μ l aus einer Übernacht-Kultur mit 700 μ l sterilem Glycerin in einem Kryogefäß gut vermengt und bei -86 °C eingefroren und gelagert.

2.9.3 Kultivierung und Anzucht von Streptomyceten

Zur Vereinzelung der Bakterien, zur Stammhaltung oder zum gezielten Screening nach Mutanten wurden die Streptomyceten auf Festmedium kultiviert. Die Anzucht der Streptomyceten in Flüssigkulturen erfolgte zur Antibiotikaproduktion, zur Anzucht zwecks Protoplastierung oder zur Proteinextraktion.

Je nach Streptomyceten-Stamm und Verwendungszweck waren unterschiedliche Medien nötig und die jeweiligen Kulturbedingungen zu beachten. Bei Anzucht von Stämmen mit Selektionsmarker wurde dem Nährmedium das entsprechende Antibiotikum zugesetzt. Die Anzucht zur Sekundärstoffextraktion im analytischen Maßstab erfolgte jeweils in 20 ml-Kulturen in 100 ml-Erlenmeyerkolben mit einer Schikane. Die Anzucht zur Protoplastierung oder Proteinexpression wurde in 100 ml-Kulturen in 300 ml-Erlenmeyerkolben mit zwei Schikanen und einer Spiralfeder durchgeführt. Zur Stammhaltung von *S. diastatochromogenes* und *S. viridochromogenes* wurden die Wildtyp- und Mutanten-Stämme 3-4 Tage bei 37 °C auf HA-Agarplatten kultiviert. Nach Einsetzen der Sporulation wurden die Platten bei Raumtemperatur aufbewahrt.

Zur Protoplastierung wurde *S. viridochromogenes* in S-Medium über Nacht bei 37 °C und 180 rpm kultiviert.

Um *S. viridochromogenes* zur **Avilamycin-Produktion** anzuregen, wurde die Kultivierung folgendermaßen durchgeführt:

 Vorkultur: 20-50 ml HA-Medium für 24 h bei 37 °C und 180 rpm
 Vorkultur: 50 ml SG-Medium für 24 h bei 37 °C und 180 rpm Hauptkultur: 50-100 ml SG-Medium für 2-3 Tage bei 28 °C und 180 rpm

Die Anzucht von *S. diastatochromogenes* zwecks **Polyketomycin-Produktion** erfolgte drei bis vier Tage in MS-Medium bei 28 °C und 180 rpm.

Zur Stammhaltung von **S. fradiae** (Wildtyp und Mutanten) wurden die Wildtyp- und Mutanten-Stämme für 5-6 Tage bei 28 °C auf HA-Agarp latten kultiviert und anschließend bei RT aufbewahrt. Zur Anzucht des Stammes zwecks Protoplastierung oder Proteinexpression wurde CRM-Flüssigmedium beimpft, und die Inkubation erfolgte bei 28 °C und 180 rpm. Falls der Stamm zur **Urdamycin-Produktion** angeregt werden sollte, wurde NL111/V-Flüssigmedium verwendet. Die Kultivierung erfolgte 5-6 Tage bei 28 °C und 180 rpm.

2.9.4 Dauerkulturen von Streptomyceten

Als Dauerkultur zur Stammerhaltung über längere Zeiträume bietet sich bei gut sporulierenden *Streptomyces*-Stämmen das Herstellen einer Sporensuspension an, die bei -20 °C gelagert werden kann. Bei Stämmen, die nicht sporulieren (z.B. Mutanten-Stämme), wurden Dauerkulturen ausgehend von Myzel angelegt.

Die Sporen einer Streptomyceten-Kultur wurden mittels Impföse abgeschabt und in 9 ml sterilem H_2O aufgenommen. Die Suspension wurde in ein 15 ml-Röhrchen überführt, und durch Vortexen (1 min) wurden die Sporen vom Myzel gelöst. Zur Abtrennung von Myzelstücken wurde die Suspension durch sterile Watte filtriert. Das Filtrat wurde pelletiert (3500 rpm, 10 min, 4 °C) und das erhaltene Pellet in 1-2 ml 20%iger Glycerinlösung (v/v) resuspendiert.

Um ausgehend von Myzel eine Dauerkultur anzulegen, wurde aus einer Flüssigkultur 1 ml entnommen und abzentrifugiert (5000 rpm, 10 min, 4 °C). Die Zellen wurden in 1 ml 15% iger Glycerinlösung (v/v) gewaschen, erneut pelletiert und anschließend in 1 ml Glycerinlösung resuspendiert.

2.9.5 Anzucht von *Bacillus subtilis* und Herstellung einer Sporensuspension

Um für die Herstellung von Antiobitika-Testplatten Sporen von *Bacillus subtilis* zu erhalten, wurden 100 ml Sporulationsmedium mit einer Sporensuspension inokuliert. Nach Kultivierung dieser Vorkultur für ca. 72 h auf einem Schüttler (120 rpm, 30 °C) wurde der Fortschritt der Sporenbildung überprüft. Ausgehend von der sporulierenden Vorkultur wurden jeweils 100 ml Sporulationsmedium mit 1 ml Zellsuspension angeimpft. Nach 3-5 Tagen Wachstum bestand die Kultur überwiegend aus Sporen. Die Zellmasse wurde durch Zentrifugation (5000 rpm, 10 min, 4 °C) pelletiert und dreimal mit Leitungswasser (steril) gewaschen. Es folgte die Resuspension der Sporen durch Zugabe von sterilem Leitungswasser, bis die OD₅₄₆ einen Wert von 1,5 erreicht hatte. Die Sporensuspension wurde aliquotiert (à 12 ml) und zur Abtötung noch vorhandener vegetativer Zellen 45 min auf 70 °C erwärmt. Diese Suspension wurde bei -20 °C gelag ert.

2.9.6 E. coli-Transformation

Herstellung Ca²⁺-kompetenter *E. coli*-Zellen

Um Plasmid-DNA in Bakterienzellen einschleusen zu können, wurden die Bakterien mit der nachfolgenden Methode (nach Sambrook *et al.*, 1989) kompetent gemacht, d.h. sie können verglichen mit unbehandelten Zellen besser DNA aufnehmen (Dagert und Ehrlich, 1979).

E. coli-Zellen aus einer Dauerkultur wurden zur Vereinzelung auf LB-Festmedium (mit Antibiotikum) ausgestrichen. 100 ml LB-Medium (mit AB) wurden mit einem Einzelklon beimpft. Aus dieser Vorkultur wurde 1 ml zum Animpfen der Hauptkultur (100 ml LB-Medium ohne AB) eingesetzt. Die Zellen wurden bei 37 °C unt er Schütteln (180 rpm) bis zum Erreichen einer OD₆₀₀ von 0,5-0,6 (nach 2-3 h) angezogen. Das Kulturmedium wurde in 50 ml-Gefäße überführt, 10 min auf Eis gestellt und 10 min bei 4 °C und 5000 rpm in der Beckman Zentrifuge (Rotor JA 10) sedimentiert. Das Bakterienpellet wurde jeweils in 30 ml eiskalter 0,1 M MgCl₂-Lösung resuspendiert und nach erneuter Zentrifugation (4 °C, 10 min, 3000 rpm) jeweils in 30 ml eiskalter 0,1 M CaCl₂-Lösung resuspendiert. Die Zellen wurden 20 min auf Eis gestellt und danach 10 min bei 4 °C und 3000 rpm zentrifugiert. Nach Entfernen des Überstandes wurden die Zellen in 5 ml 15%igem Glycerin mit 0,1 M CaCl₂ resuspendiert (dazu wird eine Gilson-Pipette mit abgeschnittenen blauen Spitzen verwendet). Die Zellsuspension wurde auf Eis in vorgekühlte 1,5 ml-Reaktionsgefäße zu 120 µl-Aliquots pipettiert und bei -80 °C eingefrore n und gelagert.

Salzlösungen für kompetente Zellen

0,1 M MgCl ₂	20,33 g/l	
0,1 M CaCl ₂	14,7 g/l	in H ₂ O bzw. in 15 % (v/v) Glycerin

Hitzeschock-Transformation

Das Einbringen von Plasmid-DNA in kompetente *E. coli*-Zellen wurde nach dem folgenden Protokoll durchgeführt (Nishimura *et al.*, 1990). Die kompetenten Zellen wurden auf Eis aufgetaut. Nach Zugabe des Ligationsansatzes bzw. der Plasmid-DNA (ca. 200 ng) folgte eine 30-minütige Inkubation auf Eis. Die Zellen wurden für 30 s einer Temperatur von 42 °C (Hitzeschock) ausgesetzt und für weitere 5 min auf Eis gestellt. Zu dem Ansatz wurden 800 µl LB-Medium (ohne Antibiotikum) pipettiert, und die Bakterien wurden 1 h bei 37 °C auf einem Schüttler inkubiert. Anschließend erfolgte das Ausplattieren auf Agarplatten mit Selektionsmedium.

2.9.7 Streptomyceten-Transformation

Um Plasmid-DNA in die Streptomyceten-Zellen einzubringen, wurden in Abhängigkeit vom Stamm zwei unterschiedliche Transformationsmethoden angewendet.

Bei *S. fradiae* und *S. viridochromogenes* wurden die Zellen protoplastiert und unter Verwendung PEG-haltiger Puffer transformiert (nach Hopwood *et al.*, 1999). Um Plasmid-DNA in die Zellen von *S. diastatochromogenes* einzuschleusen, wurde die DNA-Übertragung von *E. coli*- auf Streptomyceten-Zellen per Konjugation durchgeführt (nach Flett *et al.*, 1997).

2.9.7.1 Protoplastierung von Streptomyceten

Um DNA in Streptomyceten-Zellen einschleusen zu können, müssen diese zunächst durch eine Lysozymbehandlung protoplastiert werden. Um zu erreichen, daß das Streptomyceten-Myzel möglichst fein grieselig wächst, wurde zum Animpfen der Kultur eine Insulinspritze verwendet. 50 ml der Kultur wurden abzentrifugiert (5000 rpm, 5 min, 4 °C). Die Zellen wurden in 15 ml kaltem P-Puffer resuspendiert und erneut pelletiert (5000 rpm, 5 min, 4 °C). Zur Protoplastierung wurden die Zellen in 15 ml sterilen P-Puffer mit Lysozym resuspendiert. Die Inkubation erfolgte 45 min bei 29 °C im Hybridi sierungsofen bei ca. 100 rpm (S. viridochromogenes) bzw. 30-50 min bei 37 °C unter gelegentlichem Invertieren (S. fradiae). Der Fortschritt der Protoplastierung wurde mikroskopisch verfolgt und bei ausreichender Protoplastierung der Zellen durch Zugabe von 15 ml kaltem P-Puffer abgestoppt. Um Myzelstücke abzutrennen, wurde die Suspension unter sterilen Bedingungen durch Watte filtriert. Das Filtrat wurde pelletiert (2750 rpm, 10 min, 4 °C) und in 800-1600 µl kaltem P-Puffer resuspendiert. Die Protoplasten wurden zu 200 µl aliquotiert und zur Transformation verwendet oder zwecks Lagerung bei -86 °C eingefroren. Um die Protoplasten zu schonen, wurden zum Pipettieren abgeschnittene blaue Pipettenspitzen verwendet.

2.9.7.2 Protoplastentransformation

Zur Transformation wurden die *Streptomyces*-Protoplasten direkt nach der Herstellung verwendet oder gelagerte Protoplasten wurden rasch aufgetaut. Pro Transformationsansatz wurden 200 µl Protoplasten mit 200 µl P-Puffer verdünnt. Nach Zusatz von 10-20 µg DNA (Plasmid-DNA oder leerer Vektor aus Plasmid-Midi-Präparation) erfolgte die Zugabe von 500 µl T-Puffer. Nach vorsichtigem Vermischen wurde der Transformationsansatz auf 2-3 Regenerationsplatten (R2YE-Medium) ausplattiert. Nach 12-16 h Inkubation, die je nach Stamm bei 28 °C bzw. 37 °C erfolgte, wurde den Platt en zwecks Selektion ein entsprechendes Antibiotikum zugesetzt. Das Antibiotikum wurde dazu in Wasser oder in NB-Weichagar aufgenommen und vorsichtig auf den Regenerationsplatten verteilt. Die Inkubation wurde im Brutschrank bei 28 °C bzw. 37 °C f ortgesetzt.

Zusätzlich zur eigentlichen Transformation wurden unterschiedliche Kontrollen durchgeführt. Zur Überprüfung der Protoplasten wurden zwei Ansätze ohne Zugabe von Plasmid-DNA auf R2YE-Platten ausplattiert und ein Protoplasten-Aliquot wurde nach Zentrifugation (3000 rpm, 3 min, 4 °C) in 200 µl sterilem H₂O bidest. aufgenommen und ebenfalls ausplattiert. Die Platten wurden mit R3-Weichagar überschichtet und im Brutschrank inkubiert. Bei dem Wasseransatz platzen die Protoplasten und auf der Platte kann nur eventuell vorhandenes Myzel anwachsen. Von den zwei direkt ausplattierten Protoplasten-Aliquots wurde eine Platte nach 12-16 h mit NB-Weichagar mit geeignetem Antibiotikum überschichtet und weiter inkubiert. Die AB-haltige Platte sollte kein Wachstum aufweisen, da der Streptomycet kein Plasmid mit dem AB-Resistenzgen enthält. Anhand der Antibiotika-freien Platte läßt sich die Protoplastenmenge überprüfen.

Die nach zwei bis fünf Tagen erscheinenden Transformanten wurden auf HA-Platten mit entsprechendem Antibiotikum überimpft und bei 28 °C im Brutschrank inkubiert, um für weitere Untersuchungen mehr Zellmasse zu erhalten.

Die Einzelklone können nach ausreichendem Wachstum auch direkt in Produktionsmedium angeimpft werden, um z.B. die Analyse gebildeter Sekundärmetabolite schneller durchführen zu können.

2.9.8 Konjugation von Streptomyces sp. Tü6028

2.9.8.1 Donorkultur (*E. coli* ET12567)

Das zu transferierende Plasmid (pKC1132 mit Insert) wurde zunächst per Hitzeschock-Transformation in kompetente Zellen von *E. coli* ET12567 mit dem Helferplasmid pUZ8002 (*ori*T⁻) eingeschleust. Dieses Plasmid hilft *oriT*-tragende Plasmide zu übertragen, wird jedoch aufgrund einer Mutation im *oriT* selbst nicht übertragen. Ein transformierter Einzelklon wurde über Nacht in LB-Medium mit 25 µg/ml Kanamycin und dem entsprechenden Plasmid-Antibiotikum kultiviert. 100 µl der ÜN-Kultur wurden in 8 ml LB-Medium (mit AB-Zusatz) überimpft und inkubiert. Nach 7 h wurde die Kultur abzentrifugiert und das Pellet in 800 µl LB-Medium (ohne AB-Zusatz) resuspendiert.

2.9.8.2 Rezipientenkultur (*Streptomyces*-Stamm)

Von einer sporulierenden *Streptomyces*-Kultur wurden die Sporen mit der Impföse losgekratzt und durch Zugabe von 3-4 ml HA-Medium (oder TSB-Medium) eine Sporensuspension gewonnen. Die Suspension wurde auf zwei 2 ml-Reaktionsgefäße verteilt. Es folgte eine 10-minütige Inkubation der Sporensuspension bei 45 °C im Wasserbad. Die Suspension wurde 3-4 Stunden bei 28 °C und 180 rpm inkubiert. Die Kulturlösung wurde abzentrifugiert (7000 rpm, 10 min, RT), und das erhaltene Pellet wurde in 200 µl HA-Medium (oder TSB-Medium) resuspendiert.

2.9.8.3 Konjugationsansatz

Die beiden Suspensionen aus Donor- und Rezipientenkultur wurden zusammengegeben und gemischt. Der Ansatz wurde auf einer MS⁺-Platte (mit 10 mM MgCl₂) ausgestrichen und 14-16 h bei 28 °C inkubiert. Nach Ablauf dieser Zeit erfolgte das Überschichten des Mediums mit dem entsprechenden Selektionsantibiotikum (500 µg Apramycin; 25 µg/ml) und Fosfomycin (1 mg in 1 ml sterilem H₂O; 30 µg/ml), welches gezielt das Wachstum der *E. coli-*Zellen hemmt.

2.9.9 Screening nach Doppel-Crossing-over-Mutanten

Bei diesem Screening wird ausgehend von *Single-Crossing-over*-Mutanten nach Klonen gesucht wird, die durch ein weiteres homologes Rekombinationsereignis den Vektoranteil und im Idealfall das native Gen aus dem Genom verloren haben.

Die *Single-Crossing-over*-Mutanten wurden abwechselnd in Flüssigmedium und zur Vereinzelung der Streptomyceten auf Agarplatten ohne AB-Zusatz kultiviert. Die Doppel-*Crossing-over*-Mutanten konnten aufgespürt werden, indem die Einzelklone parallel auf einem AB-haltigen und einem AB-freien Festmedium angezogen wurden. Einige Klone waren nicht mehr gegen das Selektionsantibiotikum resistent. Um zu unterscheiden, ob es sich um eine Rückmutation zum Wildtyp oder um eine Doppel-*Crossing-over*-Mutante handelte, wurde jeweils eine "Kolonien-PCR" durchgeführt. Dazu wurde anstelle von isolierter DNA etwas Myzel zu dem PCR-Ansatz gegeben. Falls erforderlich wurden die jeweiligen PCR-Produkte per Restriktion näher untersucht.

2.10 Molekularbiologische Methoden

2.10.1 Photometrische Konzentrationsbestimmung der DNA

Zur Konzentrationsbestimmung wurde die DNA mit Wasser verdünnt (100-200fach) und in eine geeignete Quarzküvette überführt. Die Absorption der DNA-Lösung wurde im Photometer bei 260 nm bestimmt. Anhand von empirischen Vergleichsdaten konnte die Konzentration bestimmt werden:

Eine OD_{260} von 1,0 entspricht 50 µg/ml doppelsträngiger DNA Zur Reinheitsbestimmung wurde zusätzlich die Absorption bei 280 nm bestimmt. Der Quotient aus OD_{260} und OD_{280} sollte im Bereich von 1,8-2,0 liegen. Abweichende Werte

2.10.2 Alkalische Lyse zur Plasmid-DNA-Isolierung aus E. coli

zeigen eine Verunreinigung der DNA-Lösung mit Proteinen oder Phenol an.

Die Methode beruht auf der alkalischen Lyse der Zellen mit nachfolgender Neutralisierung unter hohen Salzbedingungen (Sambrook *et al.*, 1989). Bakterien-DNA denaturiert durch eine Behandlung mit NaOH und fällt aus. Im Gegensatz zur chromosomalen DNA hybridisieren die Stränge der Plasmid-DNA nach der Neutralisierung vollständig und bleiben gelöst. Nach der SDS-Behandlung werden die gesamte chromosomale DNA, ein großer Teil der zellulären RNA und Proteine durch Zentrifugation abgetrennt.

Zur Mini-Präparation von Plasmid-DNA wurden 1-10 ml Antibiotikum-haltiges LB-Medium mit einer Einzelkolonie beimpft und über Nacht bei 37 °C unter Schütteln kultiviert. Aus dieser Kultur wurden die Zellen durch Zentrifugation (6000 rpm, 5 min, RT) pelletiert. Der Überstand wurde verworfen und das Zellpellet in 100 µl Lösung 1 resuspendiert. Nach Zugabe von 200 µl Lösung 2 und Invertieren des Gefäßes folgten 5 min Inkubation bei Raumtemperatur. Die klare Lösung wurde mit 150 µl Lösung 3 versetzt, gut gemischt und 10 min auf Eis inkubiert. Proteine und Zellbestandteile wurden durch Zentrifugation (14000 rpm, 5 min, 4 °C) abgetrennt. Die Plasmid-haltige Lösung wurde in ein neues Reaktionsgefäß überführt. [Je nach gewünschter Reinheit der Plasmid-DNA wurde an dieser Stelle eine Phenolextraktion mit der Probe durchgeführt.] Die DNA wurde durch Zugabe von 0,7 Vol. Isopropanol ausgefällt und durch Zentrifugation (14000 rpm, 10 min, 4 °C) pelletiert. Das Pellet wurde mit 500 µl Ethanol (70 %) gewaschen, getrocknet und 20 min bei 50 °C unter Schütteln in 50 µl TE-RNase-Lösung gelöst.

Lösung 1	50 mM 10 mM 25 mM	Glucose EDTA Tris HCl pH 8,0	Lösung 3	3 M pH 4	Kaliumacetat 8 mit Essigsäure eingestellt
		•	TE-RNase	100 µg/ml	RNase A
Lösung 2	200 mM	NaOH		1 mM	EDTA
-	1 % (w/v)	SDS		10 mM	Tris HCI pH 8,0

2.10.3 Wizard[®] *Plus* SV Minipreps DNA Purification System

Zur Sequenzierung wurde besonders reine Plasmid-DNA benötigt. Dazu erfolgte die Isolierung der Plasmid-DNA mit dem "Wizard[®] *Plus* SV Minipreps DNA Purification System" (Promega) nach Anleitung des Herstellers aus 5-10 ml einer *E. coli*-Kultur.

2.10.4 QIAGEN Plasmid Midi Kit

Wurden größere Mengen eines Plasmids benötigt, so fand die Kultivierung der *E. coli*-Zellen in 100 ml LB-Medium statt. Die Isolierung der Plasmid-DNA erfolgte dann mit dem QIAGEN Plasmid Midi Kit nach Anleitung des Herstellers.

2.10.5 Isolierung von Plasmid-DNA aus Streptomyceten

Zur Plasmidisolierung aus Streptomyceten wurde eine modifizierte Form der alkalischen Lyse mit zusätzlicher Lysozymbehandlung durchgeführt.

Die Zellen aus 1-5 ml einer Streptomyceten-Kultur wurden pelletiert (6000 rpm, 7 min, RT). Die Zellen wurden mit 500 μ l Lösung 1 gewaschen, anschließend in 300 μ l Lysozym-haltiger Lösung 1 (4 mg Lysozym/ml) resuspendiert und 30 min bei 37 °C inkubiert. Nach Zusatz von 300 μ l Lösung 2 und Schwenken des Gefäßes wurde der Ansatz 10 min bei RT inkubiert. Das Lysat wurde mit 300 μ l Lösung 3 vermischt und 10 min auf Eis gestellt. Durch Zentrifugation (14000 rpm, 15 min, RT) wurden Proteine und Zellfragmente abgetrennt. Der Überstand wurde mit 500 μ l Phenol ausgeschüttelt, um noch enthaltene Verunreinigungen wie Proteine oder Saccharide durch Extraktion aus der wäßrigen Phase zu entfernen. Die wäßrige Phase wurde nach einem Zentrifugationsschritt (14000 rpm, 10 min, 4 °C) mit 0,7 Vol. Isopropanol gemischt und 15 min bei RT inkubiert. Die ausgefällte DNA wurde pelletiert (14000 rpm, 20 min, 4 °C) und mit 500 μ l Ethanol (70 %) gewaschen. Die getrocknete DNA wurde in 50 μ l TE-RNase gelöst und zum Abbau der RNA für 20 min bei 50 °C inkubiert.

Die verwendeten Lösungen 1, 2 und 3 sowie die TE-RNase-Lösung haben die gleiche Zusammensetzung, wie die bereits in Abschnitt 2.10.2 genannten Lösungen.

2.10.6 Isolierung von genomischer DNA aus Streptomyceten

Zur Isolierung genomischer DNA wurden die zu untersuchenden *S. viridochromogenes*-Stämme ein bis zwei Tage bei 37 °C und 180 rpm in Flüssigmedium kultiviert. Das Zellmaterial wurde durch Zentrifugation (5000 rpm, 10 min, 4 °C) vom Medium abgetrennt. 50 mg der Zellmasse wurden in ein 2 ml-Gefäß eingewogen und mit 1 ml TSE-Puffer gewaschen. Anschließend wurde das Pellet in 500 µl TSE-Puffer mit 3 mg/ml Lysozym und 100 µg/ml RNase resuspendiert. Der Ansatz wurde 30 min bei 37 °C unter gelegentlichem Invertieren inkubiert. Der Ansatz wurde mit 250 µl einer 2%igen SDS-Lösung (w/v) versetzt und anschließend 10 min bei 60 °C erhitzt, so daß sich die Lösung klärte. Die Lösung wurde mit 250 µl Phenol/Chloroform (pH 8,0) versetzt, 1-2 min durch Vortexen vermischt und zentrifugiert (14000 rpm, 20 min, 4 °C). Die wäßrig e Oberphase wurde abgenommen, mit 150 µl TE-Puffer (pH 8,0) und 250 µl Phenol/Chloroform versetzt, 1-2 min durch Vortexen vermischt und zentrifugiert. Dieser Schritt wurde wiederholt. Die wäßrige Oberphase wurde abgenommen und zur Fällung der DNA mit 0,1 Vol. 3 M Kaliumacetatlösung (pH 5,2) und 1 Vol. Isopropanol vermengt und 30 min bei RT inkubiert. Nach Zentrifugation (14000 rpm, 30 min, 4 °C) wurde das DNA-Pellet mit 500 µl eiskalt em Ethanol (70 %) gewaschen, kurz luftgetrocknet und in 50 µl TE-Puffer (pH 8,0) über Nacht gelöst.

Zur Bestimmung der Qualität und Konzentration der genomischen DNA wurde diese nach elektrophoretischer Auftrennung im Agarosegel betrachtet und am Spektralphotometer vermessen. Die Lagerung der DNA erfolgte bei -20 °C.

TSE-Puffer	103 g/l
	25 mM
	25 mM

pH 8,0 einstellen

Saccharoselösung einzeln autoklavieren; nach dem Autoklavieren Lösungen mischen

Saccharose Tris-HCI EDTA

2.10.7 Phenolextraktion und ethanolische Fällung von DNA

Um Proteine und andere Verunreinigungen aus einer Nukleinsäure-Präparation zu entfernen, wurde die Phenolextraktion mit anschließender ethanolischer Fällung der DNA durchgeführt. Die Lösung wurde mit gleichem Volumen Phenol/Chloroform (pH 8,0) gemischt und anschließend bis zur Phasentrennung zentrifugiert (14000 rpm, 3 min, RT). Die wäßrige Phase wurde in ein neues Reaktionsgefäß überführt. Zur Entfernung möglicher Phenolreste in der wäßrigen Phase wurde mit gleichem Volumen Chloroform extrahiert und wiederholt zentrifugiert. Die DNA wurde durch Zugabe von 1/10 Vol. 3 M Natriumacetat (pH 5,2) und 2,5 Vol. absolutem Ethanol 1 h bei -86 °C oder über Nacht bei -20 °C aus der wäßrigen Phase gefällt und abzentrifugiert (14000 rpm, 30 min, 4 °C). Das DNA-Pellet wurde zweimal in 70%igem Ethanol gewaschen, anschließend getrocknet und in 50 µl H₂O resuspendiert.

2.10.8 Restriktionsspaltung

Restriktionsspaltungen wurden gemäß den Empfehlungen der Hersteller (Promega; New England Biolabs; Amersham Biosciences) durchgeführt. Die Aktivitätsdefinition für Restriktionsendonukleasen besagt, daß 1 Einheit (*Unit*) Enzym ausreicht, um 1 µg DNA in 1 Stunde zu spalten. Die verwendeten Enzyme erreichen ihr Aktivitätsoptimum meist bei 37 °C. Die Lagerungspuffer der Endonukleasen enthalten in der Regel 50 % Glycerin. Die Glycerinkonzentration im Reaktionsansatz muß unterhalb von 10 % liegen, da sonst eine Inhibierung der Enzymaktivität auftreten kann. Bei nicht optimalen Salzkonzentrationen oder zu langer Inkubationsdauer kann bei manchen Enzymen sogenannte "star activity" auftreten, bei der die DNA unspezifisch geschnitten wird.

2.10.9 Gelelektrophoretische Auftrennung von DNA

Je nach Fragmentgröße der aufzutrennenden DNA-Moleküle variierte die Agarosekonzentration der verwendeten Gele zwischen 0,7 und 2,0 % (w/v). Die Agarose wurde in 1× Elektrophoresepuffer (TAE) aufgekocht. Die Agaroselösung wurde zum Erstarren in eine Gelform mit Geltaschenformern gegossen. Die Proben wurden mit 1/10 Vol. Probenpuffer versetzt und auf das Gel aufgetragen. Die DNA-Größenauftrennung im Agarosegel wurde in 1× TAE-Puffer bei einer Feldstärke von 5-10 V/cm durchgeführt. Zur Größenbestimmung der DNA-Banden wurde als Referenz ein DNA-Größenstandard (1 kb-DNA-Leiter; Promega bzw. 100 bp-DNA-Leiter; New England Biolabs) verwendet. Nach der Elektrophorese folgte die Anfärbung der DNA im Ethidiumbromid-Färbebad (1 µg/ml). Die aufgetrennten DNA-Fragmente wurden mit dem Image Master[®] VDS (Amersham/Pharmacia) unter UV-Durchlicht bei 312 nm sichtbar gemacht und zur Dokumentation mit der integrierten Digitalkamera fotografiert.

TAE-Puffer (50×, Elektrophoresepuffer) 2 M Tris-Acetat

Probenpuffer (10×)

1 MEisessig50 mMEDTA50 % (v/v)Glycerin100 mMEDTA0,2 % (w/v)Bromphenolblau oder Xylencyanol

2.10.10 DNA-Isolierung aus Agarosegelen

Um eine UV-Licht-Exposition der DNA zu vermeiden, wurde das mit DNA beladene Agarosegel nach der Gelelektrophorese statt mit Ethidiumbromid in einem 0,02% igen Methylenblau-Färbebad gefärbt. Das gefärbte Gel wurde anschließend zum Entfärben in Wasser geschwenkt, bis die angefärbten DNA-Banden deutlich sichtbar hervortraten. Die benötigten DNA-Fragmente wurden mit einer sauberen Skalpellklinge ausgeschnitten. Die Isolierung der DNA aus dem Gel erfolgte mit dem NucleoSpin[®] Extract Kit II (Macherey-Nagel) nach Anleitung des Herstellers.

2.10.11 PCR-Amplifizierungen

Die Amplifizierung von DNA-Bereichen erfolgte mittels der Polymerase-Kettenreaktion (PCR). Diese Methode beruht auf der Fähigkeit hitzestabiler DNA-Polymerasen *in vitro* neue, zum Matrizenstrang (Template) komplementäre DNA-Stränge zu synthetisieren. Dazu benötigen DNA-Polymerasen kurze Oligonukleotide (Primer), die mit der Matrizen-DNA an komplementären Sequenzen hybridisieren (annealen) können. Von dort aus startet die Neusynthese bzw. die Kettenverlängerung (Elongation). Es folgt die Auftrennung des entstandenen Doppelstranges durch Erhitzen (Denaturierung) und die anschließende Temperaturabsenkung für ein erneutes Hybridisieren. Die Amplifizierung eines DNA-Abschnitts erfolgt in mehreren aufeinanderfolgenden Zyklen von Denaturierung, spezifischer

Primerbindung und Elongation. Dabei wird eine exponentiell wachsende Anzahl von Kopien eines DNA-Fragmentes gebildet, die genau so lang sind, wie es der Abstand des Primerpaares vorgibt.

Die Reaktionen mit 50-100 µl Gesamtvolumen wurden in 200 µl PCR-Gefäßen durchgeführt. Die für eine Reaktion notwendigen Komponenten wurden auf Eis zusammenpipettiert. Das Enzym wurde jeweils zum Schluß, teilweise erst nach der 5-minütigen Denaturierung ("hot start") zum Ansatz gegeben. Es folgt eine beispielhafte Auflistung für ein 50 µl-Reaktionsvolumen, wobei die Konzentrationsangaben als Endkonzentrationen zu verstehen sind:

ca. 50 ng Plasmid-DNA
 1 μl Taq-DNA-Polymerase (Promega, 5 U/μl)
 <u>oder</u> Pfu-Polymerase (Promega, 3 U/μl)
 5 μl 10× PCR-Puffer
 Glycerin (10 %)
 dNTP (200 μM)
 Primer 1 (1 μM) (vorwärts gerichtet)
 Primer 2 (1 μM) (rückwärts gerichtet)
 H₂O zum Auffüllen

Die anschließende Inkubation mit den erforderlichen Temperaturwechseln wurde in einem automatischen Thermocycler durchgeführt.

2.10.11.1 Amplifizierung zur Überprüfung möglicher pokGT1-Mutanten

Amplifizierung eines Abschnitts aus *pokGT1* zur Unterscheidung zwischen dem Wildtyp und möglicher *pokGT1*-Mutanten von *S. diastatochromogenes.*

In dem Ansatz wurde statt Template-DNA Zellmaterial der möglichen Mutanten verwendet. Als Positivkontrolle wurde pSK/213 Δ Ncol und als Negativkontrolle wurde pSK/213 eingesetzt. Die verwendeten Primer waren pokGT-for und pokGT-rev. Die *Taq*-Polymerase wurde den PCR-Ansätzen sofort zugesetzt.

	Denaturierung	Denaturierung	Annealing	Elongation	Elongation	Kühlung
Temperatur	98 °C	95 °C	52 °C	72 °C	72 °C	8 °C
Dauer	10'00''	0'30''	0'30''	1'30''	10'00''	~
			40 Zyklen			

2.10.11.2 Amplifizierung von aviD

Amplifizierung von *aviD* zur Herstellung eines Inaktivierungskonstruktes für *S. viridochromogenes* Tü57.

In dem Ansatz wurden P2S11 (geschnitten mit *Sac*I) als Template-DNA und die Primer aviD-F1 und aviD-R1 verwendet. Die Zugabe der *Pfu*-Polymerase fand erst nach Erhitzen auf 98 °C statt.

	Denaturierung	Denaturierung	Annealing	Elongation	Elongation	Kühlung
Temperatur	98 °C	95 °C	55 °C	72 °C	72 °C	8 °C
Dauer	5'00''	0'30''	1'00''	4'00''	10'00''	~
			30 Zyklen			

2.10.11.3 Amplifizierung von urdR

Amplifizierung von *urdR* zur Überexpression und Komplementierung in *S. fradiae* RN-435 (*urdR*-Mutante).

In dem Ansatz wurden pSK-/*urdR* (geschnitten mit *Pst*I) als Template-DNA und die Primer PDHF/PDHR verwendet. Die Zugabe der *Pfu*-Polymerase fand erst nach Erhitzen auf 98 °C statt.

	Denaturierung	Denaturierung	Annealing	Elongation	Elongation	Kühlung
Temperatur	98 °C	95 °C	55 °C	72 °C	72 °C	8 °C
Dauer	5'00''	1'30''	1'00''	2'00''	10'00''	~
		30 Zyklen				

2.10.11.4 Amplifizierung von aviS

Amplifizierung von aviS zur Überexpression in S. fradiae A0.

In dem Ansatz wurden pBSK-4E5 (geschnitten mit *Eco*RI) als Template-DNA und die Primer aviS-F2/aviS-R2 verwendet. Die Zugabe der *Pfu*-Polymerase fand erst nach Erhitzen auf 98 °C statt.

	Denaturierung	Denaturierung	Annealing	Elongation	Elongation	Kühlung
Temperatur	98 °C	95 °C	55 °C	72 °C	72 °C	8 °C
Dauer	5'00''	1'30''	1'00''	2'00''	10'00''	~
			30 Zyklen			

2.10.11.5 Amplifizierung von aviT

Amplifizierung von *aviT* zur Überexpression in S. fradiae A0.

In dem Ansatz wurden pBSK-4E5 (geschnitten mit *Eco*RI) als Template-DNA und die Primer aviT-F2/aviT-R2 verwendet. Die Zugabe der *Pfu*-Polymerase fand erst nach Erhitzen auf 98 °C statt.

	Denaturierung	Denaturierung	Annealing	Elongation	Elongation	Kühlung
Temperatur	98 °C	95 °C	65 °C	72 °C	72 °C	8 °C
Dauer	5'00''	1'30''	1'00''	2'00''	10'00''	~
		30 Zyklen				

2.10.11.6 Amplifizierung von simB7

Amplifizierung von *simB7* zur Überexpression in *S. fradiae* RN-435 (*urdR*-Mutante). In dem Ansatz wurden 1K3P100 als Template-DNA und die Primer simB7-F1/simB7-R1 verwendet. Die Zugabe der *Pfu*-Polymerase fand erst nach Erhitzen auf 98 °C statt.

	Denaturierung	Denaturierung	Annealing	Elongation	Elongation	Kühlung
Temperatur	98 °C	95 °C	55 °C	72 °C	72 °C	8 °C
Dauer	5'00''	0'30''	1'00''	2'00''	10'00''	~
		30 Zyklen				

2.10.11.7 Amplifizierung von urdS

Amplifizierung von *urdS* zur Überexpression in *S. fradiae* urdSpm (= *urdS*-Mutante). In dem Ansatz wurden Cos10 (geschnitten mit *Bam*HI) als Template-DNA und die Primer urdS-F1/ urdS-R1 verwendet. Die *Pfu*-Polymerase wurde dem PCR-Ansatz sofort (ohne "hot start") zugesetzt.

	Denaturierung	Denaturierung	Annealing	Elongation	Elongation	Kühlung
Temperatur	98 °C	95 °C	62 °C	72 °C	72 °C	8 °C
Dauer	5'00''	0'30''	1'00''	2'00''	10'00''	~
			30 Zyklen			

2.10.11.8 Amplifizierung eines Vektorabschnittes

Amplifizierung eines Vektoranteils zur Generierung eines Streptomyceten-Expressionsplasmids (pAF3/*urdS*), welches das Protein um einen N-terminalen His-Tag und eine Thrombin-Erkennungsstelle zur Abspaltung des Hexahistidins erweitert.

In dem Ansatz wurden pET-28a(+) (Novagen) als Template-DNA und die Primer ET28a-F1/ET28a-R2 verwendet. Die Zugabe der *Pfu*-Polymerase fand erst nach Erhitzen auf 98 °C statt.

	Denaturierung	Denaturierung	Annealing	Elongation	Elongation	Kühlung
Temperatur	98 °C	95 °C	54 °C	72 °C	72 °C	8 °C
Dauer	5'00''	0'30''	1'00''	0'45''	10'00''	~
			35 Zyklen			

2.10.12 PCR-basierte Gensynthese

Die Synthesestrategie für die Gensynthese wird im Ergebnisteil unter Abschnitt 3.3.5 beschrieben.

Nachfolgend die Beschreibung der PCR-Bedingungen bei der Herstellung des synthetischen Gens *susy_GC*.

2.10.12.1 Amplifizierung der susy_GC-Teilstücke 3A und 3B

Für die Synthese wurden 90 Primer eingesetzt, die in Tab. 2.6 aufgeführt sind. Aus jeweils acht bzw. zehn zusammenhängenden Primern wurde ein Mix mit einer Gesamtendkonzentration von 1 pmol/µl hergestellt. Dazu wurden die Primer in Anlehnung an Gao *et al.* (2003) im Verhältnis 5:3:2:1:1:2:3:5 bzw. 5:3:2:1:1:1:2:3:5 in der numerischen Reihenfolge (s. Tab. 6.2 im Anhang) gemischt. Mit dem Mix wurde folgender PCR-Ansatz zusammenpipettiert:

5 µl	Puffer (10×)	
		-

- 1 µl dNTP (200 µM)
- 1 µl *Pfu*-Polymerase
- 43 µl Primer-Mix

Für den ersten PCR-Schritt mit den Ausgangsprimern wurde das Programm "Schritt 1" verwendet:

	Denaturierung	Denaturierung	Annealing	Elongation	Elongation	Kühlung
Temperatur	95 °C	94 °C	50 °C	72 °C	72 °C	8 °C
Dauer	3'00''	0'20''	0'20''	0'30''	2'00''	~
			35 Zyklen			

Diese PCR-Bedingungen führten in den meisten Fällen zur Synthese des gewünschten PCR-Produktes mit einer Länge von ca. 120-140 bp. In einigen Reaktionen wurden mehrere Produkte gebildet. In diesen Fällen wurde die Synthese des gewünschten Produktes durch Zusatz von Glycerin (10 % Endkonzentration) zum PCR-Ansatz erreicht.

Die im ersten Schritt gebildeten PCR-Produkte 1-7 und 8-14 wurden in Anlehnung an Young und Dong (2004) jeweils als Primer im zweiten PCR-Schritt eingesetzt. Dazu wurden jeweils 20 µl der Primer 1-7 (Mix 3B) oder 8-14 (Mix 3A) vereinigt und durch Phenolextraktion mit anschließender ethanolischer Fällung gereinigt und in Wasser aufgenommen.

Für den zweiten PCR-Schritt zur Synthese der 0,6 kb-Produkte wurde jeweils die optimale Primermenge ermittelt und ein Reaktionsansatz mit folgender Zusammensetzung pipettiert:

5 μl Puffer (10×) 1 μl dNTP (200 μM) 1 μl *Pfu*-Polymerase 1-4 μl Mix 3A bzw. 3B

Mit H_2O auf 50 µl auffüllen.

Die PCR lief unter den Temperaturbedingungen des Programms "Schritt 2" ab:

	Denaturierung	Denaturierung	Annealing & Elongation	Elongation	Kühlung
Temperatur	95 °C	94 °C	68 °C	72 °C	8 °C
Dauer	2'00''	0'30''	2'00''	3'00''	~
		20 Zy	klen		

Um für die nachfolgende Behandlung der PCR-Produkte mit T7-Endonuklease ausreichend Ausgangsmaterial zu haben, wurde jedes der entstandenen 0,6 kb-PCR-Produkte in einem zusätzlichen PCR-Schritt vervielfältigt.

0,5 µl	DNA (0,6 kb-PCR-Produkt)
2 µl	dNTP
10 µl	Puffer
1 µl	<i>Pfu</i> -Polymerase
0,2 µl	Primer A1 bzw. A45-2
0,2 µl	Primer U44 bzw. V90
86,1 µl	H ₂ O

Die PCR lief unter den Temperaturbedingungen des Programms "Zusatz-PCR" ab:

	Denaturierung	Denaturierung	Annealing	Elongation	Elongation	Kühlung
Temperatur	95 °C	94 °C	55 °C	72 °C	72 °C	8 °C
Dauer	3'00''	0'30''	0'20''	1'10''	5'00''	~
			30 Zyklen			

Die PCR-Produkte (Teilstücke 3A und 3B) wurden gefällt und anschließend in Wasser mit T7-Endonuklease-Puffer aufgenommen. Die Behandlung mit T7-Endonuklease ist in Abschnitt 2.10.13.4 beschrieben.

Die Proben wurden nach der Inkubation mit T7-Endonuklease in einem 2%igen Agarosegel aufgetrennt. Dadurch konnten die durch T7-Endonuklease entstandenen kleineren Fragmente abgetrennt werden. Die 0,6 kb entsprechenden Banden wurden ausgeschnitten und die DNA aus dem Gel eluiert.

Nun wurde ein Aliquot der DNA zusammen mit *Taq*-Polymerase, dNTP (laut Protokoll nur dATP) und dem entsprechenden Puffer für 5 min bei 72 °C inkubiert. Die *Taq*-Polymerase fügt an das 3'-Ende der DNA jeweils ein Adenosin an. Die auf diese Weise behandelte DNA kann mit dem Vektor pGEM-Teasy ligieren. Alternativ dazu erfolgte die Ligation mit dem Vektor pSK-, der mit *Eco*RV linearisiert wurde. Bei dieser Restriktion wurden glatte Enden gebildet, so daß die mittels *Pfu*-Polymerase synthetisierten PCR-Produkte nach der Gelelution ohne weitere Zwischenschritte für die Ligation verwendet werden konnten.

Nach Überprüfung der DNA-Sequenzen mußten noch ein bzw. drei Fehler aus den synthetisierten 0,6 kb-Genfragmenten "entfernt" werden. Die Fehlerbehebung erfolgte durch erneute PCR. Dazu wurden aus den vorhandenen Primern (A1-V90) jene ausgewählt, die den fehlerhaften Bereich abdecken.

Im Fall des Teilstücks 3A war der einzelne Fehler nah am 5'-Ende gelegen, so daß eine PCR mit den äußersten Primern (A45-2 und V90) und der fehlerhaften DNA als Template unter Verwendung des Programms "**Zusatz-PCR**" zur Herstellung des fehlerfreien Produktes genügte.

Im Fall des Teilstücks 3B wurden in einem ersten Schritt vier Teilstücke synthetisiert. Dabei diente die fehlerhafte DNA als Template und je PCR-Ansatz wurden zwei geeignete Primer ausgewählt. Zur Amplifizierung wurde das Temperaturprogramm "**Schritt 1**" verwendet.

Die entstandenen Produkte wurden zunächst elektrophoretisch aufgetrennt. Die PCR-Produkte 1 & 4 und 2 & 3 wurden jeweils in einem Ansatz aus dem Agarosegel eluiert.

In einem zweiten PCR-Schritt wurden die vier synthetisierten Teilstücke als Primer zur Synthese des vollständigen 0,6 kb-Fragmentes eingesetzt. Der PCR-Ansatz hatte folgende Zusammensetzung:

PCR-Produkte 1 und 4 (außen)
PCR-Produkte 2 und 3 (innen)
dNTP
Puffer
Pfu-Polymerase
H ₂ O

	Denaturierung	Denaturierung	Annealing	Elongation	Elongation	Kühlung
Temperatur	95 °C	94 °C	58,8 °C	72 °C	72 °C	8 °C
Dauer	3'00''	0'30''	0'30''	1'20"	5'00''	~
			35 Zyklen			

Zur Synthese wurde das folgende Temperaturprogramm verwendet:

2.10.12.2 Amplifizierung der aviD-Promotor-Region

Amplifizierung der *aviD*-Promotor-Region zur Herstellung eines Expressionsplasmids mit $susy_GC$ zur Expression in *S. viridochromogenes* $\Delta aviD$.

In dem Ansatz wurden P2S11 (geschnitten mit Sacl) als Template-DNA und die Primer P-aviD-for/P-aviD-rev verwendet. Die Zugabe der *Pfu*-Polymerase fand erst nach Erhitzen auf 98 °C statt.

	Denaturierung	Denaturierung	Annealing	Elongation	Elongation	Kühlung
Temperatur	98 °C	95 °C	62 °C	72 °C	72 °C	8 °C
Dauer	5'00''	0'30''	0'30''	0'30''	5'00''	~
			30 Zyklen			

2.10.13 DNA-modifizierende Enzymreaktionen

Herstellung glatter Enden an DNA-Molekülen

Viele Restriktionsendonukleasen spalten DNA so, daß an einem der beiden Stränge Überhänge entstehen. Für die Ligation von DNA-Molekülen müssen entweder Überhänge vorliegen, die miteinander kompatibel sind oder es müssen "glatte Enden" ohne Überhang vorliegen. Nach Restriktionen kann es nötig sein, an DNA mit Einzelstrang-Überhängen glatte Enden zu erzeugen. Hierzu können das Klenow-Fragment oder die T4-DNA-Polymerase eingesetzt werden.

2.10.13.1 Klenow-Fragment

Das Klenow-Fragment ist die C-terminale große Untereinheit der DNA-Polymerase I (aus *E. coli*). Es besitzt 5' \rightarrow 3'-Polymeraseaktivität und 3' \rightarrow 5'-Exonukleaseaktivität und kann somit zum Auffüllen von 5'-Überhängen oder zum Entfernen von 3'-Überhängen verwendet werden.

Zum Auffüllen von 5'-Überhängen wurde die DNA (bis zu 0,25 μ g/ μ l) in 1× Klenow-Puffer gelöst, dNTP-Mix hinzugegeben (0,2 mM Endkonzentration) und mit Klenow-Fragment (1 U/ μ g DNA) 15 min bei 37 °C inkubiert.

Zum Entfernen von 3'-Überhängen wurden DNA und Klenow-Fragment 5 min bei 37 °C inkubiert und erst dann folgte die Zugabe der dNTP.

Zur Inaktivierung des Enzyms wurde eine Phenolextraktion mit anschließender Ethanol-Fällung der DNA durchgeführt oder die DNA wurde per Gelelektrophorese aufgetrennt und aus dem Gel eluiert.

2.10.13.2 T4-DNA-Polymerase

Die T4-DNA-Polymerase (aus dem Phagen T4) besitzt ebenfalls 5'→3'-Polymeraseaktivität und 3'→5'-Exonukleaseaktivität. Dieses Enzym eignete sich ebenso zum Entfernen von 5'-Überhängen und ist die bessere Wahl zum Entfernen von 3'-Überhängen. Die Enzymreaktion kann unter den Bedingungen, wie sie oben für das Klenow-Fragment genannt wurden eingesetzt werden. Dieses Enzym besitzt den Vorteil, daß es auch in den Puffern aus einer vorausgehenden Restriktionsspaltung gute Aktivität aufweist und ein Umpuffern nicht unbedingt erforderlich ist.

2.10.13.3 Dephosphorylierung von DNA mit alkalischer Phosphatase

Um zu unterbinden, daß bei einer Ligation ein Großteil des linearisierten Vektors (mit kompatiblen Enden) religiert, wurde die Vektor-DNA mittels alkalischer Phosphatase (CIAP) an den 5'-Enden dephosphoryliert.

Nach einer Restriktionsspaltung (50 µl-Ansatz) und gegebenenfalls Hitzeinaktivierung der Endonuklease wurden 5 µl einer 1:10-Verdünnung des Enzyms (entspricht 0,5 U) hinzugegeben und weitere 30 min bei 37 °C inkubiert. Anschließend wurde das Enzym durch Phenolextraktion mit anschließender ethanolischer Fällung oder durch Gelelektrophorese und Gelelution entfernt.

2.10.13.4 T7-Endonuklease I

Um mit PCR-Fehlern behaftete DNA gezielt zu zerschneiden, bietet sich eine Behandlung mit der T7-Endonuklease I an. Die in Puffer aufgenommene DNA wurde 3 min bei 95 °C denaturiert und 5 min bei 75 °C renaturiert, so daß sich die DNA-Stränge neu zusammenlagern. Falls nun zwei DNA-Stränge miteinander hybridisieren, von denen einer Sequenzfehler enthält, können aufgrund der Basenfehlpaarungen an diesen Stellen keine Wasserstoffbrücken-Bindungen gebildet werden. Zu dem Ansatz wurden 10-15 U des Enzyms pipettiert und 1 h bei 37 °C inkubiert. Das Enz ym erkennt die Heteroduplex-Bereiche der DNA und schneidet die DNA spezifisch an diesen Stellen. Durch anschließende gelelektrophoretische Auftrennung und Gelelution konnten die verkürzten DNA-Stränge abgetrennt werden.

2.10.13.5 Ligation von DNA-Fragmenten durch T4-DNA-Ligase

Für die Verknüpfung von DNA-Fragmenten wurde die T4-DNA-Ligase eingesetzt. Das Enzym bildet eine Phosphodiesterbindung zwischen dem 3'-OH- und dem 5'-Phosphat-Ende

doppelsträngiger DNA. Ein typischer Ligationsansatz enthielt linearisierten Vektor und zu klonierendes Insert im molaren Verhältnis 1:3, 1 U T4-DNA-Ligase und 1× Ligationspuffer in einem Endvolumen von 10 µl. Die Ansätze wurden 3-4 h bei RT oder über Nacht bei 16 °C inkubiert. Bei glatten Enden wurde über Nacht bei 4 °C ligiert. Anschließend wurde die DNA aus dem Ligationsansatz direkt für die Transformation in *E. coli* verwendet.

2.10.13.6 TA-Klonierung

Zur direkten Insertion eines PCR-Produktes in einen Plasmidvektor wurde das "pGEM-T Easy Vector System" (Promega) verwendet. Das linearisierte Vektormolekül trägt am 3'-Ende je ein ungepaartes Desoxythymidin. Für die PCR oder im Anschluß an diese muß eine DNA-Polymerase eingesetzt werden, die unabhängig von der Matrizen-DNA dem 3'-Ende des synthetisierten PCR-Produktes ein einzelnes Desoxyadenosin-Molekül hinzufügt (z.B. *Taq*-Polymerase). Diese Eigenschaft wurde für die Klonierung des PCR-Produktes in den Vektor pGEM-T Easy genutzt. Die Ligationen wurden gemäß den Empfehlungen des Herstellers durchgeführt, wobei in Abwandlung zum Protokoll nur 0,2 µl Vektor für einen 10 µl-Ligationsansatz eingesetzt wurden. Nach der Ligasereaktion wurde der gesamte Ligationsansatz zur Transformation von *E. coli* verwendet.

Um das PCR-Produkt aus einer Synthese mit *Pfu*-Polymerase für die TA-Ligation vorzubereiten, wurde ein Aliquot der DNA zusammen mit *Taq*-Polymerase, dNTP (laut Protokoll nur dATP) und dem entsprechenden Puffer für 5 min bei 72 °C inkubiert. Die *Taq*-Polymerase fügt an das 3'-Ende der DNA jeweils ein Adenosin an. Die auf diese Weise behandelte DNA kann mit dem Vektor pGEM-T Easy ligieren.

2.10.14 Sequenzierung von Plasmid-DNA

Zur Sequenzierung der in dieser Arbeit erstellten Plasmidkonstrukte wurde die Dienstleistung der Firma 4base lab (Reutlingen) in Anspruch genommen.

2.10.15 Sequenzvergleiche mit Datenbanken

Sequenzvergleiche mit Datenbanken wurden mit dem BLAST-Programm durchgeführt (NCBI GenInfo Network, USA; Altschul *et al.*, 1997). Diese Software ist unter der Webadresse http://www.ncbi.nlm.nih.gov/BLAST/ zugänglich.

2.10.16 Southern-Hybridisierung

Diese Methode macht sich die Tatsache zunutze, daß zwei Nukleinsäurestränge (DNA-DNA), die zueinander komplementär sind, durch spezifische Basenpaarung einen Doppelstrang ausbilden können. Die zu untersuchende DNA wird dabei zunächst aus einem Agarosegel durch das "Blotten" auf eine positiv geladene Nylonmembran transferiert und anschließend fixiert. Eine markierte, spezifische DNA-Sonde kann dann mit der DNA auf der Membran hybridisieren, sofern komplementäre Nukleotidsequenzen vorhanden sind. Anschließend kann die auf der Membran gebundene Sonden-DNA aufgrund der Markierung detektiert werden.

Die DNA-Restriktionsfragmente wurden in einem Agarosegel (0,8 %) elektrophoretisch bei niedriger Spannung aufgetrennt. Zur späteren Identifizierung und Bestimmung der Größe bestimmter hybridisierter Fragmente wurde ein DIG-markierter Längenstandard aufgetragen. Nach beendeter Gelelektrophorese wurde das Gel kurz in EtBr-Lösung gefärbt und auf einem UV-Transilluminator fotografiert. Das Agarosegel wurde 10 min in Salzsäure (250 mM) inkubiert. Danach wurde es jeweils 2 × 15 min mit Denaturierungspuffer bzw. Neutralisierungspuffer behandelt.

2.10.16.1 Transfer der DNA auf eine Membran ("Southern Blot")

Mit dem neutralisierten Gel wurde der "Southern Blot" aufgebaut werden. Das Gel wurde mit der Unterseite nach oben auf eine Lage Whatman-3MM-Papier, dessen Enden in eine mit 20x SSC-Puffer gefüllte Schale tauchen, möglichst luftblasenfrei überführt. Auf das Gel wurde eine auf Gelgröße zugeschnittene mit 20x SSC-Puffer benetzte Nylonmembran (Hybond-N, Amersham) gelegt. Die Membran wurde mit zwei weiteren Lagen Whatman-3MM-Papier in Gelgröße bedeckt. Darauf wurde ein ca. 10 cm hoher Stapel saugfähiger Papierhandtücher gelegt. Obenauf wurden zum Beschweren eine Glasplatte und ein Zusatzgewicht von ca. 0,5 kg gelegt. Die DNA-Fragmente werden durch Kapillarkräfte aus dem Agarosegel herausgelöst und auf die Nylonmembran übertragen. Nach ca. 12 h wurde die auf die Nylonmembran transferierte DNA durch Bestrahlung mit UV-Licht (254 nm; Vorderseite 1 min, Rückseite 30 s) fixiert. Mit dieser Membran wurden die Hybridisierung mit Sonden-DNA und die anschließende Detektion durchgeführt.

2.10.16.2 Markierung, Hybridisierung und Detektion von Sonden-DNA

Die für die Southern-Hybridisierung eingesetzten Sonden (PCR-Produkt oder per Restriktion aus Inaktivierungskonstrukt gewonnenes Gen) wurden nach Angaben des Herstellers mit Hilfe des "DIG High Prime DNA Labeling and Detection-Kit II" (Roche Molecular Biochemicals) durch Einbau von Digoxigenin-dUTP markiert, hybridisiert und detektiert. Nach Hybridisierung der DIG-markierten DNA-Sonde mit der membrangebundenen DNA erfolgte der Nachweis der Hybride. Dabei binden Antikörper-Konjugate (Anti-DIG mit alkalischer Phosphatase) an das Digoxigenin. Das Detektionsreagenz CSPD wird durch die AP dephosphoryliert, was mit einer Lichtemission einhergeht. Diese Chemilumineszenz ist mittels Röntgenfilm nachweisbar.

2.10.16.3	Puffer für d	die Southern-Hy	bridisierung	ı und für die	Sonden-Detektion
2.10.10.0	i unoi iui (y bi laisici alig		

Antikörper-Lösung	50,0 ml 5 μl	Blocking-Puffer Anti-DIG-AP-Konjugat		
Blocking-Puffer	10 ml	10× Blocking solution (Roche Diagnostics) Mit Maleinsäurepuffer auf 100 ml auffüllen.		
Denaturierungspuffer	20 g	NaOH		
	87,66 g	NaCl	H ₂ O bidest. ad 1000 ml	
Detektionspuffer	12,1 g 20 ml	Tris in 980 ml H₂O 5 M NaCl	pH 9,5 mit konz. HCl einstellen	
Hybridisierungspuffer	25 ml	20x SSC-Puffer		
	0,2 ml	SDS [10 % (m/v)]	LL O hideat ad 100 ml	
	1,5 g	Magermilchpulver	zum Lösen kurz erwärmen	
Maleinsäurepuffer	11,60 g	Maleinsäure		
	8,77 g	NaCl	H ₂ O bidest. ad 900 ml	
		Mit NaOH-Platzchen pH 7,5 ei	nstellen und auf 1000 ml auffullen.	
Neutralisierungspuffer	60,55 g	Tris		
	175,32 g	NaCl pH 7,5 mit konz. HCl	einstellen; H ₂ O bidest. ad 1000 ml	
Prähybridisierungspuffer	25 ml	20x SSC-Puffer		
	0,2 ml	SDS [10 % (m/v)]		
	10 ml 3 a	N-Laurylsarkosin [1 % (m/v)] Magermilchpulver	H ₂ O bidest. ad 100 ml zum Lösen kurz erwärmen	
	0 9			
SSC-Puffer (20×)	175,32 g	NaCl		
	88,23 g	tri-Natriumcitrat × 2 H ₂ O	pH 7,0 einstellen	
Tween-Waschpuffer	200 ml	Maleinsäurepuffer		
	0,6 ml	Tween 20		
2× Waschpuffer	10 ml	20× SSC-Puffer		
	1 ml	SDS [10 % (m/v)]		
	89 ml	H ₂ O bidest.		
1× Waschpuffer	0,5 ml	20× SSC-Puffer		
	1 ml	SDS [10 % (m/v)]		
	98,5 ml	H ₂ O bidest.		

2.10.17 Überexpression und Reinigung heterolog exprimierter Enzyme aus Streptomyceten

2.10.17.1 Herstellung zellfreier Proteinrohextrakte von UrdR, AviS, AviT und SimB7 Ausgehend von einer Streptomyceten-Vorkultur wurden 100 ml CRM-Medium (mit Thiostrepton) in einem 300 ml-Kolben mit einer Schikane beimpft. Die Kultur wurde bei 37 °C und 100 rpm auf einem Schüttler inkubiert. Die mit Expressionsplasmiden transformierten *S. fradiae*-Mutanten A0 und RN-435 wurden in CRM-Medium kultiviert. Nach vier Tagen Wachstum wurde die Kulturlösung abzentrifugiert (5000 rpm, 5 min, 4 °C). Das Bakterienpellet wurde ge wogen und anschließend in 2-3 ml Lysepuffer/g resuspendiert. Dem Lysepuffer wurde zuvor Lysozym (1 mg/ml) zugesetzt. Die Suspension wurde 30 min auf Eis inkubiert und dabei gelegentlich geschwenkt, damit das Lysozym die Bakterienzellwände auflösen kann. Anschließend folgte der mechanische Zellaufschluß in einer vorgekühlten Standardzelle (40 kpsi, 35 ml) unter Verwendung der "French Press"-Apparatur mit einem Maximaldruck von 18000 psi (\approx 1241 bar). Zu dem entstandenen Lysat wurden RNase A (10 µg/ml) und DNase I (5 µg/ml) gegeben. Durch Zentrifugation (5000 rpm, 30 min, 4 °C) wurden feste Zellbestandteile pelletiert. Pellet und Überstand wurden getrennt und direkt weiter verwendet oder zur Lagerung bei -20 °C eingefroren.

Lysepuffer (Ni-NTA)	50 mM	NaH ₂ PO ₄	
	300 mM	NaCl	
	10 mM	Imidazol	pH 8,0 mit NaOH einstellen

2.10.17.2 Enzymreinigung mittels Nickel-Affinitätschromatographie

4 ml der proteinhaltigen löslichen Zellsubstanz wurden gemäß der Herstellerbeschreibung mit 1 ml Nickel-NTA-Agarose (Qiagen; NTA = Nitriltriessigsäure) versetzt.

Die Suspension wurde mittels Magnetrührer für 2 Stunden bei 4 °C gerührt und anschließend in eine Säule überführt. Eine Fritte hielt dabei die Ni-NTA-Agarose mit den daran gebundenen Proteinen zurück und der Durchlauf wurde aufgefangen. Die Ni-NTA-Agarose wurde zweimal mit je 4 ml Waschpuffer gewaschen und nachfolgend viermal mit je 500 µl Elutionspuffer eluiert. Die einzelnen Fraktionen wurden getrennt gesammelt und für die Auftrennung im SDS-Polyacrylamid-Gel verwendet.

Waschpuffer (Ni-NTA)	50 mM 300 mM 20 mM	NaH₂PO₄ NaCl Imidazol	pH 8,0 mit NaOH einstellen
Elutionspuffer (Ni-NTA)	50 mM 300 mM 250 mM	NaH₂PO₄ NaCl Imidazol	pH 8,0 mit NaOH einstellen

2.10.18 SDS-Polyacrylamidgelelektrophorese (SDS-PAGE)

Zur Auftrennung von Proteinen unter denaturierenden Bedingungen wurde eine SDS-PAGE durchgeführt (Laemmli, 1970).

Für die Elektrophorese wurde die Elektrophorese-Apparatur "Mini Protean 3" von Bio-Rad verwendet. Die Herstellung der SDS-Polyacrylamid-Gele mit Sammel- und Trenngel, die Probenvorbereitung und die elektrophoretische Proteinauftrennung wurden gemäß dem Benutzerhandbuch durchgeführt.

Der Proteinextrakt wurde vor dem Auftragen auf das Gel im Verhältnis 1:1 mit Protein-Ladepuffer versetzt und 5 min bei einer Temperatur von 95 °C denaturiert. Ein definierter Proteinstandard (Bio-Rad; 14,4-97 kDa) diente zur Abschätzung des Molekulargewichts. Zum Anfärben der Proteine wurde das Sammelgel etwa 5-10 min in Färbelösung geschwenkt. Die Entfernung des ungebundenen Farbstoffs erfolgte durch dreimaliges Waschen in Entfärbelösung für jeweils 1 h. Nach dem Entfärben wurden die Gele über Nacht in eine ca. 5%ige Glycerinlösung gelegt. Zur Konservierung wurden die Gele zwischen Cellophanfolie eingebettet, in einen Rahmen gespannt und getrocknet.

Die Polyacrylamidgele (8,0 cm × 7,3 cm × 0,075 cm) hatten folgende Zusammensetzung:

 Sammelgel (4 %)
 6,1 ml
 H₂O bidest.

 2,5 ml
 Tris/HCl (0,5 M; pH 6,8)

 100 µl
 SDS (10 % (w/v))

 1,33 ml
 Acrylamid/Bisacrylamid-Lösung (30 % (w/v); Rotiphorese® Gel 30)

 50 µl
 APS (10 % (w/v))

 10 µl
 TEMED

Trenngel (12 %) für 10-100 kD-Proteine

 3,35 ml
 H₂O bidest.

 2,5 ml
 Tris/HCl (0,5 M; pH 8,8)

 100 μl
 SDS (10 % (w/v))

 4,0 ml
 Acrylamid/Bisacrylamid-Lösung (30 % (w/v))

 50 μl
 APS (10 % (w/v))

 5 μl
 TEMED

Die 10% ige APS-Lösung (50 mg in 500 μ I H₂O bidest.) stets frisch zubereiten; vor Zugabe von APS und TEMED mind. 15 min bei RT entgasen.

Probenpuffer für Acrylamidgele	3,8 ml	H ₂ O bidest.
	1,0 ml	Tris/HCI (0,5 M; pH 6,8)
	1,6 ml	SDS (10 % (w/v))
	0,8 ml	Glycerin
	0,4 ml	Bromphenolblau (1 % (w/v))
	0,4 ml	β-Mercaptoethanol (zum Schluß zugeben)

Die Probe mindestens 1:4 mit Ladepuffer verdünnen und 4 min bei 95 °C denaturieren.

n
pH 8,3 einstellen

Bei 4 °C lagern; falls Ausfällung vor Gebrauch auf RT erwärmen. 60 ml der 5fach konzentrierten Lösung mit 240 ml H₂O bidest. verdünnen und für die Elektrophorese verwenden.

Färbelösung	2,5 g/l	Coomassie Brilliant Blau G250
	45 % (v/v)	H ₂ O bidest.
	45 % (v/v)	Methanol bzw. Ethanol (vergällt)
	10 % (v/v)	Essigsäure

Den Farbstoff in Wasser und Ethanol unter Rühren (ca. 1 h) auflösen; Lösung filtrieren und Essigsäure zum Schluß hinzugeben.

Entfärbelösung

45 % (v/v)H2O bidest.45 % (v/v)Methanol bzw. Ethanol (vergällt)10 % (v/v)Essigsäure

Das gefärbte Proteingel zunächst mit VE-Wasser abspülen, anschließend ca. 1 h entfärben (evtl. die Entfärbelösung erneuern).

2.11 Sekundärstoffanalytik

2.11.1 Isolierung von Sekundärstoffen

Die verwendeten Streptomyceten-Arten schleusen die gebildeten Sekundärmetabolite aus der Zelle aus, so daß sie durch Extraktion aus dem Kulturmedium gewonnen werden können.

2.11.1.1 Extraktion im analytischen Maßstab

Zur Extraktion von Sekundärstoffen aus Streptomyceten-Kulturen im analytischen Maßstab wurde jeweils 1 ml aus einer Produktionskultur entnommen und mit 1 ml Ethylacetat vermischt. Die Extraktion erfolgte durch wiederholtes Schütteln über einen Zeitraum von ca. 20 min und anschließender Phasentrennung durch Zentrifugation (14000 rpm, 2 min, RT). Die organische Phase wurde in ein neues Gefäß überführt und zur Trockene einrotiert. Der trockene Rohextrakt wurde bei -20 °C aufbewahrt.

2.11.1.2 Extraktion im präparativen Maßstab

Bei Aufarbeitung größerer Volumina wurde das Myzel durch Zentrifugation (5000 rpm, 10 min, 4 °C) oder Filtration über HDC-Membranfilter (Pall Gelman, Dreieich; Porengröße 40 µm) von der Kulturlösung getrennt. Die Extraktion der Sekundärstoffe aus der Kulturlösung wurde mit Ethylacetat im Volumenverhältnis 1:1 durchgeführt. Die organische Phase wurde am Rotationsverdampfer zur Trockene eingeengt.

Bei *S. viridochromogenes* wurde zur Untersuchung von Mutanten zusätzlich das Myzel in Aceton suspendiert und mittels Magnetrührer für 30 min extrahiert. Das Aceton wurde am Rotationsverdampfer eingeengt. Der Rückstand wurde in 100 ml Wasser aufgenommen und zwei Mal mit demselben Volumen Ethylacetat extrahiert. Die organische Phase wurde unter Vakuum vollständig entfernt. Der Myzelextrakt wurde mit dem Extrakt aus dem Kulturmedium vereinigt.

Der Rohextrakt wurde in trockenem Zustand bei -20 °C gelagert. Für analytische Untersuchungen wurden die Extrakte in Methanol oder Acetonitril gelöst und für DC- oder LC-MS-Analysen eingesetzt.

2.11.2 Agardiffusionstest

Zur Bestimmung der biologischen Aktivität von Extrakten aus *S. viridochromogenes* und *S. diastatochromogenes* wurden Agardiffusionstests durchgeführt. Um Platten mit dem Testkeim *Bacillus subtilis* herzustellen, wurden 500 ml DM-Agar auf 40-45 °C abg ekühlt, mit 12 ml Sporensuspension vermengt und Platten gegossen. Der Rohextrakt aus Avilamycinoder Polyketomycin-produzierenden Stämmen oder deren Mutanten wurde in Methanol gelöst. 10-20 µl der Lösung wurden auf ein Antibiotika-Testblättchen pipettiert. Als Positivkontrolle wurde eine Avilamycin-Standard-Lösung und als Negativkontrolle reines Methanol eingesetzt. Die getrockneten Testblättchen wurden auf eine Testplatte mit *B. subtilis*-Sporen aufgelegt und die Platten über Nacht bei 37 °C inkubiert.

2.11.3 Dünnschichtchromatographie

Zur qualitativen Auswertung der Rohextrakte aus Avilamycin-, Polyketomycin- oder Urdamycin-produzierenden Stämmen und deren Mutanten wurde die dünnschichtchromatographische Analytik eingesetzt. Mit einer Glaskapillare wurden die in Methanol gelösten Proben als Bande auf die Kieselgelplatte aufgetragen. Als Laufmittel wurde für Urdamycine und Avilamycine eine Mischung aus Dichlormethan und Methanol im Verhältnis 9:1 (v/v) und für Polyketomycine eine Mischung aus Dichlormethan, Methanol und Eisessig im Verhältnis 10:1:0,03 (v/v) eingesetzt. Die Auftrennung erfolgte über eine Laufstrecke von 15 cm.

Zur Detektion von Avilamycin wurde die Kieselgelplatte nach der Entwicklung mit Anisaldehyd-Schwefelsäure-Reagenz (1 % Anisaldehyd in Methanol/Eisessig/Schwefelsäure (8:1:1)) besprüht und auf 110 °C erhitzt. Durch den hohen Zuckeranteil tritt eine Schwarzfärbung der Avilamycine auf. Für andere Proben erfolgte die Auswertung durch Betrachtung der entwickelten DC-Platte bei Tageslicht oder unter UV-Licht (254 nm).

2.11.4 Massenspektrometrische Analyse

Zur qualitativen Analyse der Extrakte, die aus dem Polyketomycin-Produzenten *S. diastatochromogenes* Tü6028 und der *pokGT1*-Mutante gewonnen wurden, erfolgten Messungen an der LC-MS-Anlage "Agilent 1100 Series System" mit einer Elektrospray-Kammer und einem Quadrupol-Detektor (Agilent Technologies, Waldbronn). Die Messungen wurden freundlicherweise von Andreas Günther durchgeführt.

Der Diodenarraydetektor (DAD) war direkt mit dem Massendetektor (MSD) gekoppelt. Zur Steuerung der Anlage und Auswertung der Analysen wurde die Software Chemstation verwendet. Als analytische Säule wurden eine Zorbax XDB-C8 (150 mm × 4,6 mm; 5 μm) und als Vorsäule eine Zorbax SB-C18 (12,5 mm × 4,6 mm; 5 μm) verwendet. Die Temperatur des Säulenofens betrug 35 °C. Die Auftrenn ung erfolgte unter Verwendung

eines nichtlinearen Gradienten aus den Laufmitteln Acetonitril und 0,5% iger Essigsäure, der in Tab. 2.8 angegeben ist.

Zur Detektion des Polyketomycins und möglicher Vorläufer-Produkte wurden λ_1 =214 nm, λ_2 =245 nm, λ_3 =282 nm und λ_4 =446 nm für die DAD-Aufzeichnung gewählt. Die Messungen erfolgten im negativen Modus im Massenbereich von 300 bis 1000 Dalton. Die Parameter sind in Tab. 2.9 zusammengefaßt.

Tab. 2.8: HPLC-Gradient unter Verwendung der Laufmittel Acetonitril (A) und 0,5 % Essigsäure (B) zur Auftrennung von Extrakten aus dem Wildtyp- bzw. Δ*pokGT1*-Stamm von *S. diastatochromogenes* Tü6028.

Zeit (min)	Fluß (ml/min)	% A	% B
0	0,7	35	65
5,0	0,7	35	65
20,0	0,7	70	30
23,0	0,7	95	5
27,0	0,7	95	5
30,0	0,7	35	65
35,0	0,7	35	65

Tab. 2.9: MSD-Einstellungen für analytische Messungen unter Verwendung der ESI-Quelle.

MSD-Parameter	
Massenbereich	300-1000 Da
Fragmentor- Spannung	70 V
Trockengas-Strom	12 l/min
Trockengas- Temperatur	350 °C
Vernebler-Druck	50 psig
Kapillarspannung	± 3000 V

3 Ergebnisse

3.1 Untersuchung des Polyketomycin-Clusters

3.1.1 Herstellung und Screening einer Cosmidbank

Das Polyketomycin-Biosynthesegencluster sollte im Genom des Produzenten-Stammes *S. diastatochromogenes* Tü6028 lokalisiert werden. Dazu wurde ausgehend von genomischer DNA des Bakteriums eine Cosmidbank erstellt. Die Cosmid-Inserts wurden durch partielle Spaltung der genomischen DNA mit *Sau*3AI gewonnen und in die *Bam*HI-Schnittstelle des Cosmid-Vektors pOJ436 ligiert, verpackt (Gigapack[®] III Gold Packaging Extract) und in *E. coli* DH5 α transfiziert. Die Herstellung und das Screening der Cosmidbank wurden durch die Firma Combinature Biopharm AG (Berlin) durchgeführt.

Zum Screening nach Cosmiden, die mögliche Polyketomycin-Biosynthesegene tragen, wurden eine Typ-II-PKS-Sonde und eine 4,6-Dehydratase-Sonde eingesetzt. Da die Struktur des Polyketomycins bereits bekannt war, ist eine Beteiligung dieser Enzyme an der Polyketomycin-Biosynthese sehr wahrscheinlich. Zur PCR-Amplifizierung der Sonden-DNA wurden degenerierte Primer, die an konservierten Bereichen von Typ-II-PKS- bzw. 4,6-Dehydratase-Genen binden, und genomische DNA aus *S. diastatochromogenes* als Template eingesetzt. Die dabei verwendeten Primerpaare PKSII-for/-rev und 4,6-DH-for/-rev sind in Tab. 2.5 aufgeführt.

Das Cosmid CB30-6D20 hybridisierte mit diesen Sonden und wurde für die Sequenzierung zur Verfügung gestellt. Als deutlich wurde, daß dieses Cosmid nicht alle Strukturgene für die Polyketomycin-Biosynthese enthält, wurde ein weiteres Screening unter Verwendung der zwei spezifischen Sonden 30-6D20-L und 30-6D20-R (s. Abschnitt 6.3 im Anhang) durchgeführt. Dabei wurden acht mögliche Anschlußcosmide detektiert. Einige der Cosmide hybridisierten nicht nur mit einer der spezifischen Sonde, sondern auch mit der Sonden-DNA für Typ-II-PKS-Gene und/oder für 4,6-Dehydratase-Gene. In Tab. 2.4 sind die bereitgestellten Cosmide aus der Cosmidbank aufgelistet.

3.1.2 Klonierung und Sequenzierung des Polyketomycin-Clusters

Mit dem zuerst bearbeiteten Cosmid CB30-6D20 wurde durch die Firma GATC Biotech (Konstanz) eine "Shotgun"-Sequenzierung mit 4facher Abdeckung durchgeführt. Aus den so gewonnenen Daten erstellte Dr. Tilmann Weber (AK Prof. Dr. Wohlleben, Universität Tübingen) unter Verwendung der Software Artemis sechs sogenannte "Contigs" (von *contiguous* = zusammenhängend). Die Anordnung der sechs *Contigs* mit einer Gesamtgröße

von 32,2 kb und deren Orientierung konnten im Verlauf der weiteren Sequenzauswertungen geklärt werden.

Nachdem sich abzeichnete, daß das Cosmid CB30-6D20 nicht das vollständige Cluster enthält, wurden acht mögliche Anschlußcosmide per Restriktionsanalyse untersucht. Die Analyse (s. Abb. 3.1) ergab, daß alle acht Cosmide mit CB30-6D20 überlappen. Die Cosmide CB30-4E08 (Nr.2) und CB30-2A21 (Nr.6) wurden ausgewählt und in die Sequenzierungsarbeit mit einbezogen.

Abb. 3.1: Auftrennung der neun Cosmide aus *S. diastatochromogenes* Tü6028 im Agarosegel nach Restriktion mit *Bam*HI. Die markierten Cosmide Nr.2 und 6 wurden neben 30-6D20 für die weitere Bearbeitung ausgewählt.

Um DNA-Abschnitte innerhalb der sehr großen Cosmid-Inserts sequenzieren zu können, wurden Subklone erstellt. Zunächst wurden die Subklone ausgehend von *Bam*HI-Restriktionsfragmenten und Ligation derselben mit pSK- erstellt. In einigen Fällen entstanden jedoch sehr große Fragmente, die nicht einfach zu sequenzieren waren. Daher wurden auch Subklone ausgehend von *Sacl-*, *Not*I- und *Nco*I-Fragmenten erstellt, die in den Vektor pSK-bzw. Litmus28 eingebracht wurden. Die Subklone, die ausgehend von den drei untersuchten Cosmiden erstellt wurden, sind in Tab. 3.1 aufgelistet.

Tab. 3.1: Subklone aus *S. diastatochromogenes* Tü6028. Übersicht über die Plasmide, die ausgehend von *Bam*HI-, *Not*I-, Sacloder *Nco*I-Fragmenten aus den Cosmiden CB30-6D20, CB30-4E08 und CB30-2A21 erstellt wurden. Die Fragmente wurden entweder in den Vektor pSK- oder Litmus28 ligiert und ansequenziert.

Cosmid	Subklon	Insert-Größe	Enzym	Anmerkung
	pSK/14	~5,6 kb	<i>Bam</i> HI	
	pSK/15	~4,2 kb	<i>Bam</i> HI	
	pSK/22	~2,3 kb	<i>Bam</i> HI	
50	pSK/61	224 bp und ~5,6 kb	<i>Bam</i> HI	
-6D2	pSK/93	~3,4 kb	<i>Bam</i> HI	
CB30	pSK/50	12 bp, 53 bp, 224 bp und 1086 bp	<i>Bam</i> HI	
	pSK/74	1086 bp	<i>Bam</i> HI	
	pSK/81	1262 bp	<i>Bam</i> HI	
	pSK/1-24	~2,3 kb + Cosmid-Vektor	<i>Bam</i> HI, Sa <i>u</i> 3AI	

Cosmid	Subklon	Subklon Insert-Größe Enzym		Anmerkung
	pSK/213	~6,5 kb	<i>Bam</i> HI	
	pSK/226	~2,1 kb	<i>Bam</i> HI	
	pSK/240	~2,0 kb	<i>Bam</i> HI	
	pSK/2-250-3	~0,3 kb	<i>Bam</i> HI	
	pSK/2-750-9	~0,75 kb	<i>Bam</i> HI	
	pSK/2-412	~4,1 kb	<i>Bam</i> HI	
	pSK/2-110	~11 kb	<i>Bam</i> HI	mit Cosmid-Vektor pOJ436
	pSK/2-110-55	~2,5 kb		verkürzt mit Spel/Xbal
80	pSK/2-140	~14 kb	<i>Bam</i> HI	
0-4E	pSK/2-54	~6,4 kb	Notl	
CB3	pSK/2-64	50 bp und ~4,1 kb	Notl	
U	pSK/2-81	~1,7 kb	Sacl	
	pSK/2-85	~3,5 kb	Sacl	
	pLitmus/2N5	~0,4 kb	Ncol	myo-Inositol-Metabolismus-Protein
	pLitmus/2N7	~1,8 und ~4,7 kb	Ncol	hyp. Protein; Glykosyltransferase (<i>pokGT1</i>)
	pLitmus/2N11	~0,6 kb	Ncol	myo-Inositol-Metabolismus-Protein
	pLitmus/2N14	~2,3 kb	Ncol	Eisen-Transportprotein (E. coli)
	pLitmus/2N15	~5,3 kb	Ncol	myo-Inositol-Metabolismus-Protein
	pLitmus/2N20	~6,6 kb	Ncol	2,3-Dehydratase (pokS3)
51	pSK/6-72	~7,2 kb	<i>Bam</i> HI	
-2A;	pSK/6-120	~12 kb	<i>Bam</i> HI	
B30	pSK/6-28/30	~3,0 kb	<i>Bam</i> HI	
ū	pSK/6-76	~2,2 kb	Sacl	

3.1.3 Auswertung der Sequenzdaten

Die erhaltenen Sequenz-Rohdaten wurden mit entsprechender Software (s. 2.8) bearbeitet und ausgewertet. Durch "Alignen" der Einzelsequenzen konnten die Lücken zwischen den "Contigs" geschlossen werden. Die resultierende Gesamtsequenz hat eine Größe von 52,2 kb, und es konnten 41 vollständige ORF identifiziert werden. Des weiteren wurde ein 6,9 kb großer randständiger Sequenzabschnitt von Cosmid CB30-4E08 analysiert, der weitere fünf vollständige ORF umfaßt. Der durchschnittliche GC-Gehalt beträgt in dem sequenzierten 52,1 kb-Bereich 72,3 % und im 6,9 kb-Abschnitt 73,3 %. Diese Werte entsprechen dem bei Streptomyceten üblichen hohen GC-Gehalt (Wright und Bibb, 1992).

Zur Bestimmung der Lage der Start- und Stopp-Codone der putativen Gene wurde besonders der GC-Gehalt der jeweils dritten Base in den Basentripletts aller drei Leserahmen betrachtet. Ist der GC-Gehalt sehr hoch, so gibt dies Hinweis darauf, daß es sich um den Leserahmen mit genetischer Information handelt. Auf diese Weise konnten auch Sequenzierfehler, die zu Leserahmenverschiebungen führten, ausfindig gemacht und korrigiert werden. Die nachfolgende Abb. 3.2 zeigt die sequenzierten Bereiche mit Lage der ORF. Eine entsprechende Karte mit Angabe der Lage der Cosmide und Subklone befindet sich im Anhang unter Abschnitt 6.2.

Abb. 3.2: Physikalische Karte der sequenzierten Bereiche aus den Cosmiden CB30-6D20, CB30-4E08 und CB30-2A21. Neben der 52,1 kb-Sequenz mit 41 vollständigen ORF ist im oberen Teil der Abbildung ein 6,9 kb-Abschnitt mit fünf vollständigen ORF dargestellt. Die Lage der Restriktionsschnittstellen, die bei der Erstellung von Subklonen von Bedeutung waren, ist ebenfalls angegeben (*B* = *Bam*HI, *N* = *Not*I, *Nco*I und *S* = *Sac*I).

Ausgehend von den ORF wurden die zugehörigen Aminosäuresequenzen abgeleitet und zum Abgleich mit Datenbanksequenzen verwendet. Daraufhin konnten Vorhersagen über die mögliche Funktion der Proteine gemacht werden. Die daraus resultierenden Daten sind in Tab. 3.2 zusammengefaßt.

PokSAMS >118 S-Adenosylmethionin- Synthetase (unvollst.) S-Adenosylmethionin-Synthetase S. coelicolor A3(2) 84/88 NP_625757; Bentley PokR3 326 Carbohydratkinase (Darbohydratkinase RemJ (Kinase) putative Carbohydratkinase RemJ (Kinase) S. sp. AM-7161 S. resistomycificus DSM 40133 ^T 65/76 63/73 BAC79034; Ichinose of CAE51179; Jakobi un	et al., 2002
PokSAMS >118 S-Adenosylmethionin- Synthetase (unvollst.) S-Adenosylmethionin-Synthetase S. coelicolor A3(2) 84/88 NP_625757; Bentley PokR3 326 Carbohydratkinase Carbohydratkinase putative Carbohydratkinase RemJ (Kinase) S. sp. AM-7161 65/76 BAC79034; Ichinose 63/73	et al., 2002
PokR3 326 Carbohydratkinase Dutative Carbohydratkinase RemJ (Kinase) S. sp. AM-7161 65/76 BAC79034; Ichinose S. <i>resistomycificus</i> DSM 40133 ^T 63/73 CAE51179: Jakobi un	
(Regulation) 2004	<i>et al.</i> , 2003 d Hertweck,
NDP-Hexose-3-C- NDP-Hexose-3-C-Methyltransferase S. fradiae T59235 66/77 AAD41823; Bate <i>et al</i> PokS8 415 NDP-Hexose-3-C- Methyltransferase (TylCIII) 62/72 CAA42026; Houdook	l., 2000
NRRL 2338 putativer Transkriptionsregulator Nocarrila farcinica IEM 10152 40/54 BAD58294: Isbikawa	et al., 1991
PokR1 1065 Transkriptionsregulator putatives regulatorisches Protein S. coelicolor A3(2) 34/44 NP_628294; Bentley (AfsR-ähnlich)	et al., 2002
PokGT2 382 Glykosyltransferase (SpnG) putative Glykosyltransferase S. <i>cyanogenus</i> S136 37/51 AAD13555; Westrich	et al., 2001 et al., 1999
ABC-Transporter ORF2 S. roche/F20 41/66 CAA75762; Fernánde	z-Moreno et al.,
PokABC2 269 (Transmembran- Komponente) (Transmembran-Komponente) S. coelicolor A3(2) 39/63 1998	et al 2002
PokABC1 310 ABC-Transporter (ATP- bindende Komponente) bindende Komponente)	et al., 2002
bindende Komponente) ATP-bindendes Protein S. antibioticus ATCC 11891 52/69 AAA26793; Rodrígue	z <i>et al.</i> , 1993
S. griseus subsp. griseus 43/55 CAE17547; Menénde PokGT1 397 Glykosyltransferase Glykosyltransferase ATCC 13273 43/55 CAE17547; Menénde	z <i>et al</i> ., 2004
S. argillaceus ATCC 12956 42/53 CAK50788; Blanco et	al., 2000
Diphospho-4-keto-2,3,6- S. griseoruber 47/58 AAP85346; Billign et	<i>al</i> ., 2004
rindesoxynexulose-Reduktase PokS6 342 Reduktase NanG4 (NDP-D-Glucose-4,6- <i>S. nanchangensis</i> NS3226 46/58 AAP42863; Sun <i>et al.</i> Dehydratase; -4-Epimerase; -4-Reduktase)	, 2003
Dates 420 NDP-Hexose-3- putative C-3-Dehydratase (AknP) S. galilaeus ATCC 31615 74/84 AAF73452; Räty et al	., 2000
Dehydratase Rdml S. purpurascens 74/83 AAL24451; Halo et al.	
PokU2 384 Hydroxylase Hydroxylase (NcnH) S. arenae DSM 40737 44/55 AAG44124; Brûnker e	et al., 2001
PokU1 1/3 Havinreduktase putative Havinreduktase (ActVB) S. coelicolor A3(2) 45/59 NP_629242; Bentley (et al., 2002
PokS4 333 desoxyhexose-3- NDP-3-Ketoreduktase Si So Signi Salas Si So Solo AAD 13530, Westirch Ketoreduktase S. griseus subsp. griseus 53/63 CAE17522; Menénde	z et al., 2004
dTDP-4-Keto-6- SimB3 S. antibioticus Tü6040 55/68 AF322256; Trefzer et	al., 2002
PokS3 476 desoxyglucose-2,3- Dehydratase	
Adenylatiigase S. carzinostaticus subsp. neo- 55/67 AAM77987; Liu <i>et al.</i> , PokM3 551 Salicyl-AMP-Ligase carzinostaticus ATCC 15944 Carzinostaticus ATCC 15944	2005
Salicyl-AMP-Ligase (SdgA) Streptomyces sp. WA46 54/68 BAC78380; Ishiyama	et al., 2004
iterative Typ-I-Polyketidsynthase S. carzinostaticus subsp. neo- 48/62 AAM77986; Liu et al., Iterative PKSI, NcsB carzinostaticus ATCC 15944	2005
PokM1 1739 6-Methylsalicylsäure- CalO5 Micromonospora echinospora 46-52/58-63 AAM70355; Ahlert et	<i>al</i> ., 2002
Synthase ssp. calichensis	
AviM S. viridochromogenes Tü57 40-52/59-63 AAK83194; Weitnaue	r <i>et al.</i> , 2001b
Avin S. viridochromogenes 1057 42/61 AAK83178; Weithaue PokM2 342 β-Ketoacyl-ACP-Synthase CalO4 Micromonospora echinospora 42/58 AAM70354; Ahlert et	r et al., 2001b al., 2002
SAM-abhängige Methyltransferase Trichodesmium erythraeum 38/58 EAO29425; Copelance PokMT1 347 (O-\Methyltransferase IMS101	l <i>et al</i> ., A)
putative Methyltransferase (GrhL) Streptomyces sp. JP95 28/46 AAM33664: Li und Pi	el. 2002
Ketosynthase S. griseus subsp. griseus 74/81 CAE17527; Menénde PokP1 422 Ketosynthase α ATCC 13273 ATCC 13273	z <i>et al.</i> , 2004
Ketoacyl-Synthase (MtmP) S. argillaceus ATCC 12956 74/82 CAA61989; Lombó ef	al., 1996
PokP2 407 Ketosynthase β (CLF) putative Ketosynthase (SimA2) S. antibioticus Tü6040 63/75 AAK06785; Trefzer et 60/76 Verticitie putativer CLF (UrdB) S. fradiae Tü2717 60/76 CAA60570; Decker ur	t <i>al</i> ., 2002 nd Haag, 1995
PokP3 85 Acyl-Carrier-Protein Acyl-Carrier-Protein S. arenae DSM 40737 50/67 AAD20269; Brünker e	et al., 1999
Acetyl-CoA-Carboxylase/ Acetyl-Carboxylase (α υ. β) S. sp. R1128 60/70 AAG30193; Marti <i>et a</i>	<i>l</i> ., 2000
PokAC1 579 Carboxyltransferase Acetyl-Carboxylase (a u. β) Clostridium tetani E88 41/61 AAO34787; Brüggem	ann <i>et al.</i> , 2003
(α- und β-Untereinheit) Acetyl-Carboxylase (β-Untereinheit) Deinococcus radiodurans R1 53/65 AAF10788; White et a	al., 1999
Accenyi-carboxylase (ar-uniereinneti) Geopacter sulfurreaucens PCA 54/66 AAR34/1/; Methe ét	ai., 2003
PokAC3 178 Potein Calibornia Cali	et al., 1993
PokAC2 470 Biotin-Carboxylase Biotin-Carboxylase S. sp. R1128 63/74 AAG30191; Marti <i>et a</i>	1., 2000

Tab. 3.2:	Übersicht über das	Polyketomycin-Cluster	mit abgeleitete	n Proteinen und	deren möglicher	Funktion;	AS = Länge d	er
	Aminosäureseguen	z, ID = Zahl identischer	Aminosäuren;	PO = Zahl ähnlic	her Aminosäuren	I	-	

				•	ID/PO	
Protein	AS	mögliche Funktion	Sequenzähnlichkeit zu	Stamm	in %	"Accession"-Nr./Referenz
		·	Mannose-1-phosphat-Guanylyl-	S. griseus N2-3-11	64/78	A26984; Distler et al., 1987
PokS1	354	dNDP-Glucose-Synthase	transferase (StrD) Glucose-1-phosphat- Thymidylyltransferase	S. sp. TP-A0274	62/78	BAC55207; Onaka <i>et al.</i> , 2002
PokS2	329	dNDP-Glucose-4,6-	putative dTDP-Glucose-4,6- Dehydratase (AviE1)	S. viridochromogenes Tü57	70/81	AAK83196; Weitnauer et al., 2001b
		Dellyulalase	dTDP-Glucose-4,6-Dehydratase	S. sp. TP-A0274	70/79	BAC55206; Onaka et al., 2002
PokR2	270	Regulator (SARP)	putatives Regulatorprotein der SARP-Familie	S. rochei 7434AN4 S. ambofaciens ATCC 23877	47/61 46/64	BAC76529; Mochizuki <i>et al.</i> , 2003 AAR30164; Pang <i>et al.</i> , 2004
PokMT2	345	O-Methyltransferase	putative O-Methyltransferase	S. coelicolor A3(2) S. avermitilis MA-4680	56/71 57/70	CAB76315; Bentley <i>et al.</i> , 2002 BAB69170: Omura <i>et al.</i> , 2001
			Ketoreduktase	S. griseus subsp. griseus	46/59	CAE17519; Menéndez <i>et al.</i> , 2004
PokT1	259	Ketoreduktase	Ketoreduktase	S. argillaceus ATCC 12956	46/57	CAK50780; Lombó <i>et al.</i> , 1996; Prado <i>et al.</i> , 1999
PokO1	409	FAD-bindende Monooxygenase	Oxygenase	S. griseus subsp. griseus ATCC 13273	57/70	CAE17524; Menéndez et al., 2004
PokC2	261	(Polyketid-)Cyclase	putative Cyclase (AknW)	S. galilaeus ATCC 31615	73/86	AAF73459; Räty et al., 2000
			TcmN (ab AS 166; N-Terminus nicht homolog)	S. glaucescens ETH 22794	51/64	S27696; Bibb <i>et al.</i> , 1989; Summers <i>et al.</i> , 1992
PokMT3	371	(O-)Methyltransferase	MetLC1	S. tubercidicus ATCC 25502	41/53	AAT45298; Jungmann <i>et al.</i> , 2005; Molnár <i>et al.</i> , 2005
PokC1	150	Cyclase	Cyclase	S. griseus subsp. griseus ATCC 13273	58/69	CAE17525; Menéndez et al., 2004
PokO3	109	(Mono-)Oxygenase	Oxygenase	S. argillaceus ATCC 12956	43/61	CAK50778; Lombó <i>et al</i> ., 1996; Prado <i>et al.</i> , 1999
PokL	495	Acyl-CoA-Ligase/ Acyl-CoA-Synthetase	Acyl-CoA-Ligase	S. griseus subsp. griseus ATCC 13273	53/65	CAE17553; Menéndez et al., 2004
PokC3	314	Cyclase/Aromatase	putative Aromatase	S. avermitilis MA-4680	46/59	BAB69280; Omura et al., 2001
1 0100	014	eyolase// tromatase	bifunkt. Cyclase/Dehydrase (MtmQ)	S. argillaceus ATCC 12956	46/61	CAA61987; Lombó et al., 1996
Del To	054	Katawa du lata na	Ketoreduktase	S. argillaceus ATCC 12956	57/67	CAK50776; Lombó et al., 1996; Prado et al., 1999
POKIZ	251	Ketoreduktase	Ketoreduktase	S. griseus subsp. griseus ATCC 13273	51/62	CAE17551; Menéndez et al., 2004
PokO2	541	FAD-abhängige Oxidoreduktase	Oxygenase	S. griseus subsp. griseus ATCC 13273	52/65	CAE17550; Menéndez et al., 2004
			RubN	S. collinus DSM 2012	47/59	AAM97364; Saito et al.
PokO4	506	Oxidoreduktase	Oxygenase	S. griseus subsp. griseus ATCC 13273	46/57	CAE17536; Menéndez et al., 2004
PokS7	204	dNDP-4-Keto-2,6-desoxy-	putative TDP-4-Keto-6-desoxy- glucose-3,5-Epimerase (EryBVII)	Saccharopolyspora erythraea NRRL 2338	71/79	CAA72086; Gaisser <i>et al.</i> , 1997b; Doumith <i>et al.</i> , 2000
		giucose-o-cpiinerase	3,5-Epimerase	S. sp. TP-A0274	59/72	BAC55217; Onaka et al., 2002
			dTDP-4-Keto-2,3,6-tridesoxy-	S. peucetius ATCC 29050	49/61	AAB63047; Otten <i>et al.</i> , 1997
PokS9	319	4-Ketoreduktase	putative dTDP-4-Keto-6-desoxy- hexose-Reduktase (SnoG)	S. nogalater ATCC 27451	47/60	CAA12010; Torkkell et al., 1997
Pokl 12	302	Acul CoA Dobudroconoco	putative Acyl-CoA-Dehydrogenase	S. avermitilis MA-4680	92/96	BAC68977; Omura <i>et al.</i> , 2001
1 0100	535	noy-oon-benyuroyellase	putative Acyl-CoA-Dehvdrogenase	Nocardia farcinica IFM 10152	52/69	YP 116741: Ishikawa <i>et al.</i> 2004
PokY1	> 0F	upbokappt	hypothet. Protein	S. avermitilis MA-4680	87/93	BAC68976; Omura <i>et al.</i> , 2001
	200	ansonann	hypothet. Protein SCO7239	S. coelicolor A3(2)	92/93	CAB94053; Bentley et al., 2002

Tab. 3.3: Übersicht über den 6,9 kb-Sequenzabschnitt mit abgeleiteten Proteinen und deren möglicher Funktion; AS = Länge der Aminosäuresequenz, ID = Zahl identischer Aminosäuren; PO = Zahl ähnlicher Aminosäuren

Protein	AS	mögliche Funktion	Sequenzähnlichkeit zu	Stamm	ID/PO in %	"Accession"-Nr./Referenz
Orf2-A	>112	Kinase	putatives IoIC-Protein	S. avermitilis MA-4680	86/93	BAC74861; Omura <i>et al.</i> , 2001; Ikeda <i>et al.</i> , 2003
			putative Carbohydratkinase	S. coelicolor A3(2)	84/91	CAB88955; Bentley et al., 2002
Orf2-B	292	unbekannt	hypothet. Protein	S. avermitilis MA-4680	88/92	BAC74860; Omura <i>et al.</i> , 2001; Ikeda <i>et al.</i> , 2003
				S. coelicolor A3(2)	87/92	CAB88954; Bentley et al., 2002
Orf2-C	303	myo-Inositol-Metabolismus	putatives IoIB-Protein	S. avermitilis MA-4680	79/84	BAC74859; Omura <i>et al.</i> , 2001; Ikeda <i>et al.</i> , 2003
			hypothet. Protein	S. coelicolor A3(2)	78/83	CAB88953; Bentley et al., 2002
Orf2-D	624	Acetolactatsynthase	putatives IoID-Protein	S. avermitilis MA-4680	86/90	BAC74858; Omura <i>et al</i> ., 2001; Ikeda <i>et al</i> ., 2003
			putative Acetolactatsynthase	S. coelicolor A3(2)	81/88	CAD55394; Bentley et al., 2002
Orf2-E	266	Regulator	putativer Transkriptionsregulator der GntR-Familie	S. avermitilis MA-4680	82/87	BAC74857; Omura <i>et al</i> ., 2001; Ikeda <i>et al.</i> , 2003
				S. coelicolor A3(2)	77/84	CAB89035; Bentley et al., 2002
Orf2-F	119	unbekannt	hypothet. Protein SC9C7.27c hypothet. Protein SC9C7.27c	Frankia sp. EAN1pec S. coelicolor A3(2)	83/88 38/54	ZP_00573401; Copeland <i>et al.</i> , B) CAA22739; Bentley <i>et al.</i> , 2002
Orf2-G	>332	<i>myo</i> -Inositol-2- Dehydrogenase	putative Oxidoreduktase putative Oxidoreduktase	S. coelicolor A3(2) S. avermitilis MA-4680	82/89 83/87	CAB88965; Bentley <i>et al.</i> , 2002 BAC74866; Omura <i>et al.</i> , 2001; Ikeda <i>et al.</i> , 2003

3.1.4 Charakterisierung der Biosynthese-Proteine

3.1.4.1 Die Polyketomycinon-Biosynthese

3.1.4.1.1 Typ-II-PKS

Relativ zentral in dem bisher sequenzierten 52,1-kb-Abschnitt liegen drei benachbarte Gene, mit einheitlicher Leserichtung. Der Datenbankabgleich zeigte, daß die Genprodukte von *pokP1*, *pokP2* und *pokP3* für die Minimaleinheit einer Typ-II-Polyketidsynthase codieren. Eine "minimale PKS" katalysiert die Synthese des Polyketidgrundgerüstes. Im Fall des Polyketomycins wären diese drei Proteine an der Synthese eines linearen Dekaketids beteiligt, das als Polyketomycinon-Vorstufe gebildet wird.

Das 422 AS umfassende Protein **PokP1** weist jeweils 74 % identische Aminosäuren zu den α-Ketosynthasen aus dem Chromomycin A3-Produzenten *S. griseus* subsp. *griseus* ATCC 13273 (Menéndez *et al.*, 2004) und aus dem Mithramycin-Produzenten *S. argillaceus* ATCC 12956 (MtmP; Lombó *et al.*, 1996) auf. Für **PokP2** (407 AS) liegt mit 63 % identischen Aminosäuren hohe Sequenzübereinstimmung zur β-Ketosynthase SimA2 aus dem Simocyclinon-Cluster von *S. antibioticus* Tü6040 (Trefzer *et al.*, 2002) vor. Mit 60 % Übereinstimmung auf Proteinebene ist die Sequenzähnlichkeit zur β-Ketosynthase UrdB aus *S. fradiae* Tü2717 ähnlich hoch (Decker und Haag, 1995). Für **PokP3** ergibt der Vergleich der 85 AS langen Sequenz mit 50 % Identität die höchste Homologie zu einem Acyl-Carrier-Protein aus *S. arenae* DSM 40737, der Naphthocyclinon synthetisiert (Brünker *et al.*, 1999).

3.1.4.1.2 Cyclasen/Aromatasen

Stromabwärts der PKS-II-Gene etwa 10,4 kb entfernt liegen die drei Gene *pokC2*, *pokC1* und *pokC3*. Sie sind nicht unmittelbar benachbart, sondern durch ein Gen bzw. zwei Gene getrennt. Die Leserichtung von *pokC2* und *pokC1* liegt in 5' \rightarrow 3'-Orientierung, wohingegen *pokC3* die entgegengesetzte Leserichtung aufweist. Die drei Genprodukte sind aufgrund ihrer Sequenzhomologien wahrscheinlich an der Cyclisierung des linearen Polyketids beteiligt.

PokC2 (261 AS) fungiert wahrscheinlich ebenso wie das an der Aklavinon-Synthese beteiligte Protein AknW aus *S. galilaeus* ATCC 31615, mit dem es 73 % identische Aminosäuren teilt, als Cyclase (Räty *et al.*, 2000). Das 150 Aminosäuren umfassende Protein **PokC1** stimmt auf Aminosäureebene zu 58 % mit einer Cyclase aus *S. griseus* subsp. *griseus* ATCC 13273 überein (Menéndez *et al.*, 2004). Das 314 AS große Protein **PokC3** weist jeweils 46 % Übereinstimmung zu einer putativen Aromatase aus *S. avermitilis* MA-4680 (Omura *et al.*, 2001) und zu der bifunktionellen Cyclase/Dehydrase MtmQ aus dem Mithramycin-Cluster von *S. argillaceus* ATCC 12956 auf (Lombó *et al.*, 1996).
3.1.4.1.3 Ketoreduktasen

Eine weitere Klasse von Polyketid-modifizierenden Enzymen ist mit zwei Genen im Polyketomycin-Cluster vertreten. Die Gene *pokT1* und *pokT2* liegen zusammen mit anderen *post*-PKS-Genen im letzten Drittel der Sequenz. Die abgeleiteten Proteine fungieren dem Sequenzvergleich zufolge als Ketoreduktasen.

Die Sequenz von **PokT1** umfaßt 259 AS und es besteht zu 46 % Übereinstimmung mit der Aminosäuresequenz einer Ketoreduktase aus *S. griseus* subsp. *griseus* ATCC 13273 (Menéndez *et al.*, 2004). Die zweite putative Polyketid-modifizierende Ketoreduktase ist **PokT2** (251 AS). PokT2 ist auf Proteinebene zu 57 % Sequenz-identisch zu einer Ketoreduktase aus dem Mithramycin-Produzenten *S. argillaceus* ATCC 12956 (Lombó *et al.*, 1996; Prado *et al.*, 1999).

3.1.4.1.4 Oxygenasen

Es folgt die Beschreibung der vier Gene *pokO1*, *pokO3*, *pokO2* und *pokO4*, deren Genprodukte nach Vergleich mit Datenbanksequenzen vermutlich als Oxygenasen das Polyketid modifizieren. Diese Gene liegen ebenfalls zusammen mit anderen Genen, die für PKS-modifizierende Enzyme codieren, im letzten Sequenzdrittel. Die beiden letztgenannten Gene sind benachbart und werden ausgehend von einem rund 0,4 kb großen nicht-codierenden Abschnitt in unterschiedliche Richtungen transkribiert.

Das von *pokO1* abgeleitete Protein weist 409 AS auf und hat 57 % identische Aminosäuren mit einer FAD-bindenden Monooxygenase aus *S. griseus* subsp. *griseus* ATCC 13273 (Menéndez *et al.*, 2004). Mit nur 109 AS ist **PokO3** die kleinste unter den vier Oxygenasen. Die AS-Sequenz ist zu 43 % identisch zu einer (Mono-)Oxygenase aus *S. argillaceus* ATCC 12956 (Lombó *et al.*, 1996; Prado *et al.*, 1999). Die beiden übrigen Genprodukte mit möglicher Funktion als Oxygenasen **PokO2** und **PokO4** umfassen 541 AS bzw. 506 AS. Sie zeigen im Sequenzvergleich auf Proteinebene mit 52 % bzw. 47 % die höchste Homologie zu FAD-abhängigen Polyketidoxygenasen aus *S. griseus* subsp. *griseus* ATCC 13273 (Menéndez *et al.*, 2004) bzw. aus *S. collinus* DSM 2012 (RubN; Saito *et al.*; nur Sequenz veröffentlicht).

3.1.4.1.5 Methyltransferasen

Sowohl das Polyketomycinon, der Desoxyzucker L-Axenose, als auch die 3,6-Dimethylsalicylsäure tragen Methylgruppen, die im Verlauf der Synthese durch Methyltransferasen auf das Molekül übertragen werden. Die Methyltransferase PokMT1 wird zusammen mit den Enzymen, die an der 3,6-Dimethylsalicylsäure-Synthese beteiligt sind, erläutert (s. Abschnitt 3.1.4.2). Die Methyltransferase PokS8 aus dem Desoxyzuckerbiosyntheseweg wird in Zusammenhang mit weiteren "Zucker-Enzymen" in Abschnitt 3.1.4.3 erläutert. An dieser Stelle folgt das Ergebnis der Sequenzanalyse der putativen Methyltransferasen PokMT2 und PokMT3 aus dem Polyketomycin-Cluster. Die Gene *pokMT2* und *pokMT3* liegen benachbart zu Genen, deren Genprodukte an der Polyketidmodifizierung beteiligt sind. *pokMT2* wird als einziges Gen in dem Cluster-Abschnitt in 3'→5'-Richtung gelesen. *pokMT3* liegt zwischen den Cyclasegenen *pokC2* und *pokC1*. Das abgeleitete 345 AS umfassende Protein **PokMT2** ist zu 57 % bzw. 56 % identisch mit putativen Methyltransferasen aus *S. avermitilis* MA-4680 (Omura *et al.*, 2001) und *S. coelicolor* A3 (Bentley *et al.*, 2002). Das 371 Aminosäuren große Genprodukt von **pokMT3** hat 51 % bzw. 41 % Sequenzidentität mit Methyltransferasen aus dem Tetracenomycin C-Produzenten *S. glaucescens* ETH 22794 (Bibb *et al.*, 1989; Summers *et al.*, 1992) und aus *S. tubercidicus* ATCC 25502 (Jungmann *et al.*, 2005; Molnár *et al.*, 2005).

Die zwei zuvor beschriebenen Methyltransferasen sowie PokMT1 und PokS8 methylieren zwar unterschiedliche Substrate, teilen jedoch drei gemeinsame AS-Sequenzmotive (s. Tab. 3.4), die typisch sind für S-Adenosyl-L-Methionin-abhängige Methyltransferasen (Kagan und Clarke, 1994). Lediglich in der Desoxyzucker-MT PokS8 fehlt das Motiv II.

Aufgrund der Sequenzmotive ist es wahrscheinlich, daß an der Methylierung der Methylgruppendonor S-Adenosyl-L-Methionin (SAM) beteiligt ist.

Tab. 3.4: Sequenzmotive der Methyltransferasen. In Anlehnung an Kagan und Clarke (1994) wurden drei Sequenzmotive lokalisiert. In Fettdruck wurden die Aminosäuren hervorgehoben, die besonders häufig innerhalb der Sequenzmotive auftreten. Das Motiv I besteht aus zwei Bereichen: Hellgrau unterlegt ein Nukleotid-bindendes Motiv und in dunkelgrau der Bereich, der im Abstand von 19 AS (bei PokS8 nur 17 AS) ein konserviertes Aspartat (D) enthält.

Protein	Motiv		Motiv II	Motiv III		
PokMT1	180 VI DIGGG DG	203 VT V FD	243 GADGIMF	271 ALP PGG VCLV		
PokMT2	176 VVDVA gg hg	199 GALFD	239 E AD VF IL	266 SA RPGGR V V V		
PokMT3	207 VADVGGGRG	230 GVLFD	270 GCDAYVL	299 IGDSAA RLL V		
PokS8	104 VLDIGSNDS	125 LVGID		190 LDDD G VWLLE		

3.1.4.2 Die 3,6-Dimethylsalicylsäure-Biosynthese

Den Fütterungsversuchen von Paululat *et al.* (1999) zufolge wird als Vorläufer der 3,6-Dimethylsalicylsäure zunächst 6-Methylsalicylsäure synthetisiert, die später am C3-Atom methyliert wird. Die Synthese der 6-Methylsalicylsäure, deren Methylierung und Adenylierung sowie möglicherweise auch die Übertragung des Salicylrestes auf den L-Axenose-Rest werden wahrscheinlich durch die Expression vier hintereinander angeordneter Gene ermöglicht. Dabei handelt es sich um *pokM3*, *pokM1*, *pokM2* und *pokMT1*, die zum Teil im Bereich der Start-/Stopp-Codone miteinander überlappen. Die vier Gene weisen 3'→5'-Leserichtung auf, so daß die Transkription mit *pokMT1* beginnt.

Mit 5220 bp besitzt **pokM1** den größten ORF innerhalb des Polyketomycin-Clusters. Das abgeleitete Protein weist 48 % identische AS zu der iterativen Typ-I-Polyketidsynthase NcsB aus *S. carzinostaticus* subsp. *neocarzinostaticus* ATCC 15944 auf, die die Synthese von

2-Hydroxy-5-methoxy-1-naphthoesäure katalysiert (Sthapit *et al.*, 2004, Liu *et al.*, 2005). Des weiteren beträgt die AS-Sequenzidentität zu den Orsellinsäure-Synthasen CalO5 aus *Micromonospora echinospora* ssp. *calichensis* (Ahlert *et al.*, 2002) und AviM aus *S. viridochromogenes* Tü57 (Gaisser *et al.*, 1997a; Weitnauer *et al.*, 2001b) 46 % bzw. 40 %. Das 1739 Aminosäuren große Protein setzt sich aus mehreren funktionellen Domänen zusammen. Werden beim Vergleich nur die katalytischen Domänen berücksichtigt, die auch in CalO5 und AviM vorkommen, beträgt die AS-Sequenzidentität in beiden Fällen sogar 52 %.

Eine Analyse der Aminosäuresequenz mit der Software SEARCHPKS ermöglichte es, die einzelnen Domänen einem Vergleich mit bereits bekannten PKS zu unterziehen.

Auf diese Weise konnten PokM1 vier katalytische Domänen zugeordnet werden, die aufgrund ihrer Homologie als Ketosynthase (KS; 426 AS), Acyltransferase (AT; 293 AS), Ketoreduktase (KR; 192 AS) bzw. Acyl-Carrier-Protein (ACP; 64 AS) fungieren könnten. Eine weitere Domäne mit möglicher Dehydratase-Funktion (DH; ~120 AS) wurde durch direkten Vergleich mit ähnlichen PKS zugeordnet. Der Domänenaufbau von PokM1 ist zur Veranschaulichung in Abb. 3.3 dargestellt.

Abb. 3.3: Übersicht über Größe und Lage der katalytischen Domänen von PokM1. Die anhand von SEARCHPKS bestimmten Domänen sind mit einer Größenangabe versehen. KS = Ketosynthase, AT = Acyltransferase, DH = Dehydratase, KR = Ketoreduktase, ACP = Acyl-Carrier-Protein

Das von **pokM2** abgeleitete Protein umfaßt 342 AS und ist jeweils zu 42 % Sequenzidentisch mit AviN aus *S. viridochromogenes* Tü57 (Weitnauer *et al.*, 2001b) und CalO4 aus *Micromonospora echinospora* ssp. *calichensis* (Ahlert *et al.*, 2002). Die zu PokM2 homologen Proteine AviN und CalO4 sind putative β-Ketoacyl-ACP-Synthasen. Es ist also denkbar, daß auch PokM2 eine vergleichbare Enzymaktivität besitzt und den initialen Schritt der 6-Methylsalicylsäuresynthese katalysiert. Das würde bedeuten, daß PokM2 möglicherweise die Starter-Einheit Acetyl-CoA erkennt, als initiale KS agiert und eine Acetyl-KS-Bindung entsteht.

PokM3 mit seinen 551 Aminosäuren stimmt zu 55 % mit der AS-Sequenz einer putativen Adenylatligase aus *S. carzinostaticus* subsp. *neocarzinostaticus* ATCC 15944 überein (Liu *et al.*, 2005). Dies gibt Hinweis auf die mögliche Funktion von PokM3 als Dimethyl- oder Methylsalicylsäure-AMP-Ligase. Die Sequenzidentität zu dem Protein SdgA aus einem Salicylsäure-Abbauweg in *Streptomyces* sp. WA46 ist mit 54 % ähnlich hoch (Ishiyama *et al.*, 2004). Ein weiteres Enzym mit 42 % Sequenzähnlichkeit zu PokM3 ist das aus *Yersinia pestis* stammende YbtE (AAC69591; Gehring *et al.*, 1998a und 1998b).

Direkt in Leserichtung vor den drei "Methylsalicylsäuregenen" liegt **pokMT1**. Die abgeleitete Aminosäuresequenz (347 AS) zeigt im Sequenzvergleich 38 % Übereinstimmung zu einer SAM-abhängigen Methyltransferase aus *Trichodesmium erythraeum* IMS101 (nur Sequenzdaten: Copeland *et al.*, A). Unter den homologen Streptomyceten-Proteinen zeigt die Methyltransferase GrhL aus dem Griseorhodin A-Cluster (*Streptomyces* sp. JP95) mit 28 % identischen Aminosäuren die höchste Übereinstimmung zu PokMT1 (Li und Piel, 2002). Die benachbarte Lage von *pokMT1* zu den Methylsalicylsäuregenen und die gemeinsame Transkriptionsrichtung deuten darauf hin, daß diese Methyltransferase an der Synthese der 3,6-Dimethylsalicylsäure beteiligt ist.

3.1.4.3 Die Desoxyzuckerbiosynthese

Bisher wurden noch keine Biosynthesegene untersucht, die an der Synthese der Desoxyzucker D-Amicetose oder L-Axenose beteiligt sind. Allerdings wurden kürzlich D- und L-Amicetose durch heterologe Expression geeigneter Desoxyzuckerbiosynthesegene in einem *S. lividans*-Stamm synthetisiert (Pérez *et al.*, 2005). Ausgehend von den Daten bisher bekannter Desoxyzuckerbiosynthesewege und daran beteiligter Enzyme konnten innerhalb des Polyketomycin-Clusters neun Desoxyzuckerbiosynthesegene sowie zwei Glykosyl-transferasegene identifiziert werden. Die elf Gene liegen über das Cluster verteilt vor, meist in kleineren Gruppen mit unterschiedlicher Leserichtung.

Etwa 1,4 kb entfernt vom 5'-Ende des sequenzierten Bereiches liegt *pokS8*. Das **PokS8**-Protein (415 AS) zeigt auf Proteinebene 66 % bzw. 62 % Übereinstimmung mit der NDP-Hexose-3-C-Methyltransferase TylCIII aus dem Tylosin-Produzenten *S. fradiae* T59235 (Bate *et al.*, 2000) bzw. dem ORF1 aus dem Erythromycin-Cluster von *Saccharopolyspora erythraea* NRRL 2338 (Haydock *et al.*, 1991).

Das **pokGT2**-Gen folgt mit 3,3 kb Abstand in entgegengesetzter Leserichtung. Bei dem abgeleiteten Protein PokGT2 handelt es sich um eine 382 Aminosäuren umfassende Glykosyltransferase mit vergleichsweise geringer Sequenzhomologie. Die Aminosäuresequenz ist zu 35 % mit SpnG einer NDP-Rhamnosyltransferase aus *Saccharopolyspora spinosa* (Waldron *et al.*, 2001) und zu 37 % mit einer Glykosyltransferase des Landomycin-Produzenten *S. cyanogenus* S136 (Westrich *et al.*, 1999) identisch.

Im Abstand von 6,5 kb folgen drei weitere Gene mit 5' \rightarrow 3'-Leserichtung. Am Anfang der Dreiergruppe liegt *pokGT1*, dessen Start-Codon mit dem des benachbarten Gens *pokS6* überlappt. Daran grenzt *pokS5* an. Das 397 Aminosäuren große Protein **PokGT1** ist zu 43 % identisch mit einer Glykosyltransferase von *S. griseus* subsp. *griseus* ATCC 13273 (Menéndez *et al.*, 2004) und zu 42 % mit einer GT aus dem Mithramycin-Produzenten *S. argillaceus* ATCC 12956 (Blanco *et al.*, 2000). Die Sequenz von **PokS6** (342 AS) hat mit 47 % identischen AS die höchste Homologie zu einer 4-Ketoreduktase aus *S. griseoruber* (Bililign *et al.*, 2004) und 46 % Übereinstimmung mit NanG4 aus dem Nanchangmycin-

Ergebnisse

Produzenten *S. nanchangensis* NS3226 (Sun *et al.*, 2003). Für das Protein **PokS5** (432 AS) ergab der Datenbankabgleich 74 % AS-Identität mit einer NDP-Hexose-3-Dehydratase (AknP) aus dem Aklavinon-Produzenten *S. galilaeus* ATCC 31615 (Räty *et al.*, 2000).

In geringem Abstand von 1,8 kb folgen die beiden nächsten Gene in gegenläufiger Leserichtung. Sie liegen 1,7 kb vom PKS-I-Gen *pokM1* entfernt im Cluster. Es handelt sich dabei um *pokS4* und *pokS3*, deren Start- und Stopp-Codone miteinander überlappen. Das Protein **PokS4** (333 AS) ist dem Sequenzvergleich zufolge eine 3-Ketoreduktase mit 55 % Sequenzübereinstimmung zu einem als Oxidoreduktase klassifizierten Protein aus *S. cyanogenus* S136 (Westrich *et al.*, 1999) und 53 % Übereinstimmung mit einer NDP-3-Ketoreduktase aus *S. griseus* subsp. *griseus* ATCC 13273. Das abgeleitete 476 AS große Protein **PokS3** weist 55 % Sequenzidentität mit einer dTDP-4-Keto-6-desoxyglucose-2,3-Dehydratase (SimB3) aus dem Simocyclinon-Cluster von *S. antibioticus* Tü6040 auf (Trefzer *et al.*, 2002).

Zentral gelegen etwa 3,7 kb stromabwärts von den PKS-II-Genen liegt das Start-Codon von *pokS1*. Unmittelbar angrenzend mit überlappendem Start-Codon schließt sich *pokS2* an. Die abgeleiteten Proteinsequenzen umfassen 354 bzw. 329 Aminosäuren. Die Sequenz von **PokS1** weist 64 % identische Aminosäuren zu einer Mannose-1-phosphat-Guanylyltransferase (StrD) aus dem Streptomycin-Produzenten *S. griseus* N2-3-11 auf (Distler *et al.*, 1987). Dem Sequenzvergleich zufolge handelt es sich bei **PokS2** um eine dNDP-Glucose-4,6-Dehydratase mit 70 % AS-Identität zu AviE1 aus dem Avilamycin-Produzenten *S. viridochromogenes* Tü57 (Weitnauer *et al.*, 2001b).

Nahe dem 3'-Ende der Sequenz liegen die beiden benachbarten Gene *pokS7* und *pokS9*. Das abgeleitete Protein **PokS7** (204 AS) ist zu 71 % identisch mit der AS-Sequenz von EryBVII aus dem Erythromycin-Produzenten *Saccharopolyspora erythraea* NRRL 2338. Bei dem homologen Protein handelt es sich um eine putative TDP-4-Keto-6-desoxy-glucose-3,5-Epimerase (Gaisser *et al.*, 1997b; Doumith *et al.*, 2000). Aufgrund der Struktur der L-Axenose ist für PokS7 Aktivität als 5-Epimerase zu erwarten. Bei dem letzten im Polyketomycin-Cluster vorliegen Zuckerbiosynthesegen *pokS9* liegt auf Proteinebene eine 49%ige Sequenzübereinstimmung mit der 4-Ketoreduktase DnmV aus *S. peucetius* ATCC 29050 vor (Otten *et al.*, 1997). DnmV ist an der Synthese des Zuckers Daunosamin beteiligt, der Bestandteil des Daunorubicins ist. Das 319 AS umfassende Protein PokS9 fungiert bei der Zuckerbiosynthese wahrscheinlich als 4-Ketoreduktase.

Den aufgeführten Proteinen PokS1-PokS9 kann aufgrund von Homologievergleichen mit hoher Wahrscheinlichkeit jeweils eine Enzymfunktion zugeordnet werden. Entsprechend dem in Abschnitt 4.1.4.2 vorgeschlagenen Desoxyzuckerbiosyntheseweg würden die elf Gene im Polyketomycin-Cluster zur Synthese und Übertragung der beiden im Polyketomycin enthaltenen Zucker genügen. Voraussetzung für den postulierten Ablauf ist, daß dNDP-D-Amicetose und dNDP-L-Axenose aus dNDP-4-Keto-2,6-didesoxyglucose als gemeinsamem Vorläufer hervorgehen und sich der Biosyntheseweg erst nach diesem Zwischenprodukt verzweigt.

3.1.5 Charakterisierung weiterer Genprodukte

Für einige Gene und deren abgeleitete Proteine kann anhand der Übereinstimmungen im Sequenzvergleich noch keine konkrete Enzymfunktion zugeordnet werden oder aber es gibt Hinweise auf die Enzymaktivität, die sich jedoch nicht eindeutig der Polyketomycin-Biosynthese zuordnen läßt.

3.1.5.1 Regulatorische Proteine

Die Synthese von Sekundärmetaboliten erfolgt meist unter bestimmten Umweltbedingungen. Die Expression der entsprechenden Biosynthesegene unterliegt daher regulatorischen Mechanismen. Auch im Polyketomycin-Cluster konnten drei Gene mit putativen regulatorischen Funktionen identifiziert werden. Die Gene *pokR3* und *pokR1* liegen nahe dem 5'-Ende der Sequenz. Zwischen den beiden Genen liegt *pokS8*, dessen Genanfang mit dem Stopp-Codon von *pokR3* überlappt. Die genannten Gene werden in einheitlicher Richtung transkribiert. Das dritte mögliche Regulationsgen ist *pokR2*, das rund 200 bp stromabwärts von *pokS2* liegt.

Die abgeleitete Aminosäuresequenz von pokR3 umfaßt 326 AS. Das Protein ist zu 65 % identisch zu einer putativen Carbohydratkinase aus Streptomyces sp. AM-7161 (Ichinose et al., 2003). Ein in PokR3 vorkommendes Sequenzmotiv deutet die Zugehörigkeit der Kinase zur PfkB-Familie (PfkB = Phosphofructokinase B) an. Eine Beteiligung von PokR3 an der Polyketomycin-Biosynthese erscheint unwahrscheinlich. Möglicherweise ist das Enzym im Kohlenhydratstoffwechsel (Glykolyse) aktiv und nimmt als Phosphofructokinase regulatorisch Einfluß auf den Primärstoffwechsel. Mehr Anhaltspunkte bezüglich der Funktionsweise gibt es für PokR1. Dieses Protein ist mit seinen 1065 AS das zweitgrößte im Polyketomycin-Cluster und stimmt zu 40 % mit einem putativen Transkriptionsregulator aus Nocardia farcinica IFM 10152 überein (Ishikawa et al., 2004). Die Sequenzhomologie zu einem putativen AfsR-ähnlichen Regulatorprotein aus S. coelicolor A3(2) fällt mit 34 % geringer aus (Bentley et al., 2002). Aus Untersuchungen an AfsR aus S. coelicolor ist bereits bekannt, daß AfsR durch das Membran-assoziierte Sensor-Protein AfsK phosphoryliert wird. Das phosphorylierte AfsR setzt darauf die Transkription eines weiteren Gens (afsS) in Gang (Hong et al., 1991; Horinouchi und Beppu, 1992; Matsumoto et al., 1994; Lee et al., 2002). AfsS steigert in bisher noch ungeklärter Weise die Antibiotikaproduktion. Die Wirkung des AfsS ist dabei nicht spezifisch auf ein Biosynthesegencluster gerichtet, sondern es beeinflußt als übergeordneter Regulator die Produktion unterschiedlicher Antibiotika.

Das abgeleitete Protein von *pokR2* ist 270 AS lang und zu 47 % Sequenz-identisch mit einem putativen Regulatorprotein aus *S. rochei* 7434AN4 (Mochizuki *et al.*, 2003). PokR2

läßt sich aufgrund der Aminosäuresequenz den Antibiotika-Biosynthese-spezifischen regulatorischen Streptomyceten-Proteinen (SARP = *"Streptomyces* antibiotic regulatory proteins") zuordnen. Die Proteine der SARP-Familie enthalten im N-terminalen Bereich ein *"Helix-Turn-Helix-Loop-Helix"-DNA-Bindemotiv, wie es in dem Sequenzvergleich in Abb. 3.4 gezeigt ist. Auch PokR2 weist dieses Sequenzmotiv auf.*

ORF75 SAR	1 1	MDIDVLGTUAVKENDVSVTPRAPKERQVLALLALHADQVVPIASLIDELWGDRPPRSARTTLQTYILQLREMIAKALEQD MKIQVLGAUNAEFNGISVVPTAGKERQILALLALCPGRVVPVPTLNEEIWGTELPOSSMTTLQTYILQLRELLGTAMGPD	80 80
TyIS Dnrl PokP2	1 1 1	MDIAVLGPLDVRENGLSVTPTAPKPRQVLALLALHADQVVPVSALIEELWGERPPRSARTTLQTYVLQLRELISAAITND MQIAVLGPLVAHHNGTSVTPTARKPRQVFSLLALQAGTVVPVPALMDELWGTQPPASALTTLQTYILQVRRGITVALGAS	80 80
FURRZ	I	Helix Turn Helix Loop Helix	00

Abb. 3.4: Sequenzvergleich der N-terminalen Region einiger Proteine aus der SARP-Familie in Anlehnung an Mochizuki *et al.* (2003). Die α-Helix-Regionen im DNA-Bindemotiv sind grau unterlegt. Die verglichenen Proteine (in Klammern die "Accession"-Nr.) sind folgende: ORF75 aus *S. rochei* (NP_851497), SAR aus *S. ambofaciens* (Y18862), TylS aus *S. fradiae* (AF145049), Dnrl aus *S. peucetius* (M80237) und PokR2 aus *S. diastatochromogenes* Tü6028.

3.1.5.2 Resistenz-vermittelnde Proteine

Innerhalb von Antibiotika-produzierenden Mikroorganismen finden sich je nach Wirkprinzip des gebildeten Antibiotikums meist ein oder mehrere Resistenzgene im Biosynthesegencluster. Diese Resistenzgene, die auch außerhalb des Clusters liegen können, vermitteln bei Expression Schutz vor dem synthetisierten Wirkstoff. Im Polyketomycin-Cluster konnten die benachbarten Gene pokABC2 und pokABC1 zwischen den Genen pokGT2 und pokGT1 lokalisiert werden, die aufgrund der Ergebnisse aus dem Homologievergleich als Resistenz-vermittelnde Gene in Frage kommen.

PokABC2 (269 AS) stimmt zu 41 % bzw. 39 % mit der AS-Sequenz eines ABC-Transport-Proteins aus *S. rochei* F20 bzw. *S. coelicolor* A3(2) überein (Fernández-Moreno *et al.*, 1998; Bentley *et al.*, 2002). Die homologen Proteine bilden jeweils die Transmembran-Komponente eines ABC-Transporters. Die AS-Sequenz von PokABC2 wurde zur Vorhersage von Transmembran-Domänen durch eine Hydrophobizitätsanalyse (mit der TMHMM-Software) näher charakterisiert. Die Analyse ergab, daß PokABC2 mit hoher Wahrscheinlichkeit sechs Transmembran-Bereiche besitzt, wie es für Transmembran-Komponenten eines ABC-Transporters typisch ist.

Das von **pokABC1** abgeleitete 310 AS große Protein zeigt bei der Suche nach homologen Proteinen 53 % bzw. 52 % Sequenzidentität mit den ATP-bindenden Komponenten von ABC-Transportern aus *S. antibioticus* ATCC 11891 (Oleandomycin-Cluster; Rodríguez *et al.*, 1993) und aus *S. coelicolor* A3(2) (Bentley *et al.*, 2002). Innerhalb der PokABC1-Sequenz konnten die für Nukleotid-bindende Proteine typischen Motive Walker A und Walker B festgestellt werden (Walker *et al.*, 1982).

PokABC1 bildet wahrscheinlich zusammen mit PokABC2 ein Efflux-System zur Ausschleusung des Polyketomycins aus der Streptomyceten-Zelle.

3.1.5.3 Biotin-[Acetyl-CoA-Carboxylase]-Synthetase

Im Anschluß an die PKS-II-Gene befinden sich in derselben Transkriptionsrichtung die drei Gene *pokAC1*, *pokAC3* und *pokAC2*. Der Sequenzanalyse zufolge bilden die drei resultierenden Proteine wahrscheinlich eine funktionelle Einheit.

Bei **PokAC1** mit seinen 579 AS handelt es sich um eine putative Acetyl-CoA-Carboxylase, die sich in zwei Untereinheiten (α und β) gliedern läßt. Die Sequenz stimmt zu 60 % mit einer Acetyl-Carboxylase aus Streptomyces sp. R1128 überein, die ebenfalls die α - und β -Untereinheit umfaßt (Marti et al., 2000). Zwei weitere Sequenzhomologe entsprechen jeweils nur einer Untereinheit. Die Acetyl-Carboxylase- α -Untereinheit aus Geobacter sulfurreducens PCA ist zu 54 % identisch zu PokAC1 (Methé et al., 2003), während die Acetyl-Carboxylaseβ-Untereinheit aus Deinococcus radiodurans R1 zu 53 % mit PokAC1 übereinstimmt (White et al., 1999). Die abgeleitete AS-Sequenz von pokAC3 ergibt mit 178 Aminosäuren ein relativ kleines Protein. Im Sequenzvergleich steht mit 45 % Übereinstimmung wieder ein Protein aus Streptomyces sp. R1128 an erster Stelle (Marti et al., 2000). Des weiteren zeigt PokAC3 Homologie (39 % identische AS) zu einem Biotin-Carboxylase-Carrier-Protein (BCCP) aus Saccharopolyspora hirsuta 367 (Le Gouill et al., 1993). Dementsprechend könnte auch PokAC3 als BCCP fungieren. Das 470 Aminosäuren große Protein PokAC2 ergibt im Sequenzvergleich höchste Übereinstimmung (63 %) mit einer Biotin-Carboxylase aus Streptomyces sp. R1128 (Marti et al., 2000). Es ist anzunehmen, daß sich die drei Proteine zu einer Acetyl-CoA-Carboxylase ergänzen, die den Polyketid-Baustein Malonyl-CoA synthetisiert.

Bisher ist ein solches Enzym innerhalb eines Antibiotika-Biosynthesegenclusters nur im Fall des Jadomycin B-Produzenten *S. venezuelae* ISP5230 näher untersucht worden. Das untersuchte Gen *jadJ* codiert laut Sequenzvergleich für zwei Untereinheiten und umfaßt sowohl die Biotin-Carboxylase als auch das Biotin-Carboxylase-Carrier-Protein. Han und Mitarbeiter (2000) erzeugten eine *jadJ*-Mutante und stellten bei ihr eine deutlich reduzierte Jadomycin-Produktion fest, die nur noch 10-13 % der Wildtyp-Produktion erreichte. Demnach nutzt der Streptomycet zur Jadomycin-Synthese nicht nur Malonyl-CoA aus dem Primärmetabolismus, sondern die PKS wird zusätzlich mit Malonyl-CoA aus dem Sekundärmetabolismus versorgt.

3.1.5.4 Proteine mit unbekannter Funktion aus dem Polyketomycin-Cluster

In diesem Abschnitt werden die Ergebnisse aus den Homologievergleichen von sechs Genprodukten beschrieben. Drei der Gene (*pokL*, *pokU2* und *pokU1*) liegen verteilt im Polyketomycin-Cluster in Nachbarschaft zu Strukturgenen. Eine mögliche Funktion kann den resultierenden Proteinen aufgrund des Sequenzvergleiches zwar zugeordnet werden, doch welche Rolle sie bei der Polyketomycin-Synthese spielen könnten, ist unklar. Die drei weiteren Gene (*pokSAMS*, *pokU3* und *pokX1*) liegen am 5'- bzw. 3'-Ende der Sequenz und

sind daher zum Teil unvollständig. Die abgeleiteten Proteine haben möglicherweise auch Einfluß auf die Polyketomycin-Biosynthese.

Das Gen **pokL** weist dieselbe Transkriptionsrichtung wie die benachbarten Gene *pokO3* und *pokC3* auf. Das Genprodukt ist 495 AS groß und zu 53 % identisch mit einer Acyl-CoA-Ligase/Acyl-CoA-Synthetase aus *S. griseus* subsp. *griseus* ATCC 13273 (Menéndez *et al.*, 2004).

Die Gene *pokU2* und *pokU1* liegen zwischen den Desoxyzuckerbiosynthesegenen *pokS5* und *pokS4*. Die Lage der Gene deutet an, daß sie zusammen mit fünf stromaufwärts gelegenen Genen transkribiert werden. Das Protein **PokU2** umfaßt 384 AS und weist 44 % Sequenzübereinstimmung mit einer Hydroxylase aus dem Naphthocyclinon-Produzenten *S. arenae* DSM 40737 (Brünker *et al.*, 2001) auf. Die abgeleitete Aminosäuresequenz von *pokU1* (173 AS) stimmt mit einer putativen Flavinreduktase aus *S. coelicolor* A3(2) zu 45 % überein (Bentley *et al.*, 2002).

Das bisher unvollständige Gen **pokSAMS** liegt am 5'-Ende der Sequenz und codiert für ein 118 AS umfassendes Protein. Der bislang bekannte Anteil von PokSAMS stimmt zu 84 % mit der Aminosäuresequenz einer SAM-Synthetase aus *S. coelicolor* A3(2) überein (Bentley *et al.*, 2002). In der Nähe des 3'-Endes der Sequenz liegt zwischen *pokS9* und *pokX1* das Gen **pokU3**. Der Homologie-vergleich des 393 AS umfassenden Proteins PokU3 deutet auf eine mögliche Funktion als Acyl-CoA-Dehydrogenase hin, da PokU3 eine 92%ige Übereinstimmung mit einer putativen Acyl-CoA-Dehydrogenase aus *S. avermitilis* MA-4680 aufweist (Omura *et al.*, 2001; Ikeda *et al.*, 2003).

Ein weiteres noch unvollständig sequenziertes Gen mit Lage am 3'-Ende der Sequenz ist **pokX1**. Das abgeleitete Genprodukt umfaßt derzeit 96 AS. Die Sequenzidentität zu dem hypothetischen Protein SCO7239 aus *S. coelicolor* A3(2) (Bentley *et al.*, 2002) fällt mit 92 % sehr hoch aus. Einen Hinweis auf die mögliche Funktion des Proteins ergibt sich daraus allerdings nicht.

3.1.5.5 *myo*-Inositol-Metabolismus-Proteine

In dem 6,9 kb großen sequenzierten Abschnitt am 5'-Ende des Cosmids CB30-4E08 wurden fünf vollständige ORF und zwei am Rand gelegene unvollständige Leserahmen bestimmt. Die ersten fünf Gene haben einheitliche Transkriptionsrichtung, während die beiden übrigen am 3'-Ende des Sequenzabschnitts in Gegenrichtung abgelesen werden.

Der Aminosäuresequenzvergleich der entsprechenden Proteine zeigte, daß in diesem Sequenzabschnitt, mit Ausnahme von *orf2-F*, Gene liegen, deren Genprodukte zu 79-88 % mit Proteinen aus *S. coelicolor* oder *S. avermitilis* identisch sind. Vier der Proteine (Orf2-A, Orf2-C, Orf2-D und Orf2-G) können aufgrund der Sequenzidentität mit einem *myo*-Inositol-Abbauweg in Verbindung gebracht werden. In dem Gram-positiven Bakterium *Bacillus subtilis* wurde das *iol*-Operon mit ähnlichen Genen bereits untersucht (Yoshida *et al.*, 1997; Yoshida *et al.*, 2004).

Es folgen zunächst die Ergebnisse aus dem Sequenzvergleich der vollständigen Gene orf2-C, orf2-D und orf2-E. Das Genprodukt von **orf2-C** umfaßt 303 AS und weist 79 % Identität zu einem putativen IoIB-Protein aus *S. avermitilis* MA-4680 auf (Omura *et al.*, 2001; Ikeda *et al.*, 2003). Bei **Orf2-D** mit seinen 624 AS besteht 86 % Sequenzidentität zu einem putativen IoID-Protein (Acetolactatsynthase) aus *S. avermitilis* MA-4680 (Omura *et al.*, 2001; Ikeda *et al.*, 2003). Das Protein **Orf2-E** (266 AS) könnte regulatorische Funktion haben, da es zu 82 % mit einem putativen Transkriptionsregulator (Repressor) der GntR-Familie aus *S. avermitilis* MA-4680 übereinstimmt (Omura *et al.*, 2001; Ikeda *et al.*, 2003).

Orf2-B gehört mit seinen 292 AS zusammen mit **Orf2-F** (119 AS) zu den Proteinen, denen bislang keinerlei Funktion zugeordnet werden kann. Beide Proteine zeigen im Sequenzvergleich große Übereinstimmung zu "hypothetischen Proteinen". Orf2-B ist zu 88 % mit einem Protein aus *S. avermitilis* MA-4680 identisch (Omura *et al.*, 2001; Ikeda *et al.*, 2003). Orf2-F hingegen ist zu 83 % bzw. 38 % Sequenz-identisch mit zwei hypothetischen Proteinen aus dem symbiotisch lebenden Actinomyceten *Frankia* sp. EAN1pec (nur Sequenzdaten: Copeland *et al.*, B) bzw. *S. coelicolor* A3(2) (Bentley *et al.*, 2002), die wiederum Homologie zu dem Protein SC9C7.27c aufweisen.

Die beiden unvollständigen Sequenzen ergeben für **Orf2-A** bisher 112 AS und für **Orf2-G** ein Protein mit mehr als 322 AS. Orf2-A fungiert möglicherweise als Kinase innerhalb des *myo*-Inositol-Abbaus und zeigt in der bisher bekannten Sequenz 86 % Homologie zu einem putativen IoIC-Protein aus *S. avermitilis* MA-4680 (Omura *et al.*, 2001; Ikeda *et al.*, 2003). Orf2-G weist im bekannten Sequenzabschnitt 83 % bzw. 82 % identische Aminosäuren zu den putativen *myo*-Inositol-2-Dehydrogenasen (Oxidoreduktasen) aus *S. avermitilis* MA-4680 (Omura *et al.*, 2001; Ikeda *et al.*, 2002).

3.1.6 Inaktivierung von pokGT1

Um den Nachweis zu erbringen, daß es sich bei den sequenzierten Genen, um Biosynthesegene aus dem Polyketomycin-Cluster handelt, wurde das Gen *pokGT1* (1194 bp), das Homologie zu Glykosyltransferasegenen aufweist, inaktiviert. Die Inaktivierung müßte zur Unterbrechung der Polyketomycin-Synthese führen. Eine Anhäufung von Vorläufermolekülen wäre denkbar.

3.1.6.1 Herstellung des Plasmids pKC1132/∆pokGT1

Um *pokGT1* (1194 bp) zu inaktivieren, wurde das Plasmid pSK/213 mit einer Länge von ca. 9,5 kb verwendet. Dieses Plasmid enthält ein 6,5 kb-*Bam*HI-Fragment (s. Abb. 6.4 im Anhang) aus dem Gencluster. Rund 400 bp stromabwärts vom *pokGT1*-Start-Codon liegt eine *NcoI*-Schnittstelle, die zum Linearisieren des Plasmids genutzt wurde. Die Überhänge wurden mittels T4-DNA-Polymerase aufgefüllt. Es folgte die Religation des Plasmids. Durch

die Auffüllreaktion und Religation erhielt die Sequenz vier zusätzliche Basenpaare, was zu einer Leserasterverschiebung führte. Anstelle der *Ncol*-Schnittstelle entstand eine *Eco*T22I-Schnittstelle. Diese Mutation verhindert, daß im Verlauf der Proteinbiosynthese das funktionale Protein PokGT1 gebildet wird. Das so konstruierte Plasmid, wurde zusätzlich sequenziert, um die DNA-Sequenz im Bereich der Mutation zu überprüfen.

Alte Sequenz mit **Ncol**-Schnittstelle: GTCCACGACGTGCTGGCCGGCCGGTGCTGGCCG

Neue Sequenz mit vier zusätzlichen Nukleotide (in grau) und *Eco*T22I-Schnittstelle: GTCCACGACGTGCTGGCCATGCATGCATGCCGGGCCGGTGCTGGCCG

Der so veränderte DNA-Abschnitt wurde in die *Bam*HI-Stelle des Vektors pKC1132 kloniert. Dieser Vektor trägt ein Apramycin-Resistenzgen zur Selektion. Er ist nicht replikativ und eignet sich somit, das native Gen mittels homologer Rekombination durch das mutierte Gen zu ersetzen.

3.1.6.2 Konjugation von S. diastatochromogenes Tü6028

Der *E. coli*-Stamm ET12567 mit dem Plasmid pUZ8002 wurde mit dem Plasmid pKC1132/ Δ pokGT1 (s. Abb. 6.4 im Anhang) transformiert. Der *E. coli*-Stamm fungierte als Donor-Stamm für die Konjugation von *Streptomyces diastatochromogenes* Tü6028 (s. Abschnitt 2.9.8). Zur Selektion der Konjuganten und zum Entfernen der *E. coli*-Bakterien wurde mit 500 µg Apramycin und 1 mg Fosfomycin je Platte überschichtet.

Ausgehend von einem Konjugationsansatz wuchsen 53 *Streptomyces*-Klone. 14 Klone wurden auf einer Apramycin-haltigen HA-Platte ausgestrichen. Von diesen Klonen wurden acht ausgewählt und in TSB-Medium inkubiert. Das Medium wurde mit Apramycin (25 µg/ml) und Fosfomycin (30 µg/ml) versetzt, zum einen, um nur Streptomyceten mit Resistenz zu kultivieren und zum anderen, um noch vorhandene *E. coli*-Bakterien abzutöten. Ausgehend von diesen Kulturen wurde eine Kolonien-PCR durchgeführt.

3.1.6.3 Kolonien-PCR zum Prüfen der pokGT1-Mutanten

Durch Amplifizierung eines DNA-Abschnitts aus der pokGT1-Sequenz und anschließende Restriktion des PCR-Produktes mit EcoT221 konnte zwischen Wildtyp und Integrationsmutanten Doppel-Crossing-over-Mutanten unterschieden bzw. werden (s. Abschnitt 2.10.11.1).

Es konnte in allen Fällen ein 0,9 kb-DNA-Fragment amplifiziert werden. Um zu prüfen, ob es sich um Wildtyp- oder Mutanten-DNA handelt, wurden jeweils 2 µl des PCR-Produktes mit *Eco*T22I geschnitten. Das Wildtyp-PCR-Produkt war nicht schneidbar, während die Restriktion des Mutanten-PCR-Produktes zu einem 228 bp- und einem ca. 0,7 kb-Fragment führte.

Von den acht untersuchten Klonen konnten sechs als Integrationsmutanten identifiziert werden. In diesen Fällen traten nach der Restriktion drei Banden von 0,23 kb, 0,7 kb bzw. 0,9 kb auf. Ein Klon wurde für das Screening nach einer Doppel-*Crossing-over*-Mutante ausgewählt (s. Abschnitt 2.9.9).

Nach der 2. Passage wurden bereits Einzelkolonien auf Verlust der Apramycin-Resistenz getestet. Nach der 4. Passage waren 19 von 77 Klonen Apramycin-sensibel. Alle 19 Klone wurden per Kolonien-PCR überprüft. Dabei zeigte sich, daß 15 Klone zum Wildtyp rückmutiert sind, während die übrigen vier Klone Doppel-*Crossing-over*-Mutanten entsprechen.

3.1.6.4 Untersuchung der S. diastatochromogenes-pokGT1-Mutante

Nachdem sich durch Analyse der PCR-Produkte bestätigte, daß vier *pokGT1*-Mutanten vorliegen, sollte deren Antibiotikaproduktion untersucht werden. Dazu wurden Wildtyp, *Single-Crossing-over*-Mutante und die vier Doppel-*Crossing-over*-Mutanten, wie in Abschnitt 2.9.3 beschrieben ist, in MS-Medium kultiviert. Die Kulturen wurden abzentrifugiert, und der Überstand wurde mit Ethylacetat extrahiert. Das Zellpellet wurde zunächst mit Aceton aufgeschlossen und nach Entfernen des Acetons ebenfalls mit Ethylacetat extrahiert.

Die Extrakte wurden mittels Dünnschichtchromatographie und per LC-MS analysiert. Nach Auftrennung der Extrakte trat jeweils ein orangefarbiger Fleck auf. Die Laufhöhe der Substanzflecken war unterschiedlich. Der Rf-Wert betrug für den Wildtyp-Extrakt 0,81 und bei den untersuchten Mutanten-Extrakten 0,79 (Integrationsmutante) bzw. 0,78 (*pokGT1*-Mutante). Momose *et al.* (1998a) haben für Polyketomycin einen Rf-Wert von 0,53 ermittelt, wobei das Laufmittel allerdings Chloroform anstatt Dichlormethan enthielt.

Um die Unterschiede zwischen Wildtyp und *pokGT1*-Mutanten zu untersuchen, wurden zwei Proben (Wildtyp und *pokGT1*-Mutante) per LC-MS analysiert. Für die Messung wurden die Extrakte jeweils in 150 μ I Acetonitril:H₂O = 1:1 aufgenommen. Die Parameter der Messung, die im negativen Modus durchgeführt wurde, sind in Abschnitt 2.11.4 aufgeführt.

Die Resultate aus der LC-MS-Analyse wurden tabellarisch zusammengefaßt (s. Tab. 3.5) und zusätzlich sind in Abb. 3.5 die HPLC-Chromatogramme wiedergegeben. Durch die Messungen wurde deutlich, daß sich Wildtyp und *pokGT1*-Mutante in ihrer Sekundärstoffproduktion unterscheiden. Der Wildtyp-Extrakt weist vier markante Peaks mit Retentionszeiten von 19,998 min, 25,616 min, 26,063 min bzw. 26,981 min auf. Der größte Peak mit einer Retentionszeit von 26,063 min läßt sich aufgrund des zugehörigen UV/VIS-Spektrums und der festgestellten Massenzahl von 864 *amu* zweifelsfrei dem Polyketomycin zuordnen. Bei den übrigen Peaks wurden jeweils unterschiedliche Massen festgestellt, so daß in diesen Fällen unterschiedliche Moleküle mit gleicher Retentionszeit vorliegen.

Zellextrakt aus	Retentionszeit (in min)	detektierte Masse (als m/z)	mögliche Molekülstruktur
WT	19,998	329,3 (-)	
WT	19,998	396,0 (-)	putativer Polyketomycinon-Vorläufer (s.Abb. 3.5)
WT	25,616	428,3 (-)	
WT	25,616	592,3 (-)	
WT	25,616	850,2 (-)	Polyketomycin, dem wahrscheinl. Methylgruppe od. Sauerstoff fehlt (-14)
WT	26,063	864,2 (-)	Polyketomycin
WT	26,981	695,8 (-)	
WT	26,981	596,4 (-)	
WT	26,981	422,3 (-)	
$\Delta pokGT1$	19,967	329,3 (-)	
$\Delta pokGT1$	19,967	396,1 (-)	putativer Polyketomycinon-Vorläufer (s.Abb. 3.5)

Tab. 3.5: Ergebnisse aus der LC-MS-Analyse. Die Messungen wurden mit Rohextrakten aus *S. diastatochromogenes* Tü6028 (Wildtyp und *pokGT1*-Mutante) im negativen Modus durchgeführt.

Im Extrakt aus der pokGT1-Mutante tritt mit einer Retentionszeit von 19,967 min nur ein markanter Peak auf. Das Flächenintegral ergibt eine etwa zweifache Fläche im Vergleich zum Wildtyp. Bei der Präparation der Extrakte wurde die Bakterienzellmasse zuvor nicht festgestellt, so daß eine exakte quantitative Bestimmung nicht möglich ist. Dennoch waren die Bedingungen recht ähnlich, so daß der größere Peak im Chromatogramm der Mutante Polyketomycin-Vorläufern sehr wahrscheinlich von herrührt. die aufgrund des unterbrochenen Syntheseweges akkumulieren. Es wurden an dieser Stelle zwei unterschiedliche Massen (329 und 396) detektiert, die auch schon beim Wildtyp-Extrakt auftraten. Da noch keine Strukturdaten vorliegen, ist zur Veranschaulichung in Abb. 3.5 für die Hauptkomponente mit 396 amu eine hypothetische Struktur dargestellt. Eine dem Polyketomycin entsprechende Masse konnte im Extrakt der Mutante nicht festgestellt werden.

Der Extrakt (30 µl des Acetonitril/Wassergemischs) wurde außerdem verwendet, um einen Aktivitätstest durchzuführen. Als Testkeim wurde *Bacillus subtilis* auf DM-Medium eingesetzt. Der Wildtyp-Extrakt war deutlich wachstumshemmend und erzeugte einen Hemmhof mit einem Durchmesser von 1,8 cm. Bei dem Extrakt der Integrationsmutante (mit einem funktionalen und einem mutierten Allel) betrug der Hemmhofdurchmesser 1,6 cm. Die Extrakte aus den vier Mutanten waren antibiotisch inaktiv gegenüber dem Testkeim, so daß sich keine Hemmhöfe bildeten.

Die Untersuchungsergebnisse sprechen dafür, daß die *pokGT1*-Mutante unfähig ist, Polyketomycin zu synthetisieren. Daraus läßt sich folgern, daß *pokGT1* für ein Protein codiert, das für die Polyketomycin-Biosynthese essentiell ist. Der erwünschte Nachweis, daß die analysierten Gene zum Polyketomycin-Cluster gehören, konnte auf diese Weise erbracht werden.

Abb. 3.5: HPLC-Chromatogramme zur Analyse der Rohextrakte aus dem Wildtyp bzw. der *pokGT1*-Mutante von *S. diastatochromogenes* Tü6028. Zur Verdeutlichung der Unterschiede sind die Chromatogramme von Wildtyp und *pokGT1*-Mutante untereinander angeordnet. Neben den Peaks sind noch die detektierten Massen der deprotonierten Moleküle angegeben. Die häufig vorkommenden Massen sind schwarz, die weniger häufig auftretenden Massen sind grau geschrieben.

3.2 Überexpression von Desoxyzuckerbiosynthesegenen

Als Werkzeuge für die kombinatorische Biosynthese wurden zahlreiche Enzyme aus Antibiotika-Clustern eingehend untersucht und charakterisiert. Durch Veränderungen im Cluster z.B. durch Genmutation oder Expression artfremder Gene konnten bereits neue Naturstoffe aus den jeweiligen Produzenten-Stämmen isoliert werden. Bereits 1985 gelang es Hopwood und Kollegen, durch Expression von Antibiotika-Biosynthesegenen aus unterschiedlichen *Streptomyces*-Stämmen, die an der Synthese von Actinorhodin und Granaticin bzw. Medermycin beteiligt sind, die ersten "hybriden" Antibiotika Mederrhodin A und Dihydrogranatirhodin zu generieren (Hopwood *et al.*, 1985).

Eine weitere Möglichkeit, veränderte Molekülstrukturen zu erhalten, ist die Fütterung von Substanzen an den natürlichen oder bereits genetisch modifizierten Produzenten-Stamm.

Falls die an der Antibiotika-Biosynthese beteiligten Enzyme die alternativen Substrate akzeptieren und es anstelle des natürlichen Substrates in die Sekundärstoffe einbauen, enstehen neue "Naturstoffe", die teilweise antibiotisch aktiv sind. So gelang beispielsweise Jacobsen und Kollegen bei Fütterungsversuchen an einer Mutante von *Saccharopolyspora erythraea* die Synthese von Erythromycin-Analoga (Jacobsen *et al.*, 1997).

Für ähnliche Untersuchungen oder auch für *In-vitro*-Tests z.B. zur Untersuchung der Substratspezifität von Glykosyltransferasen ist es von Interesse, Zugang zu Nukleotidaktivierten Desoxyzuckern zu erhalten. Die chemische Synthese dieser Zuckerklasse wird durch die Notwendigkeit von Schutzgruppen zur Kontrolle der Regio- und Stereoselektivität erschwert. Zudem sind die Ausbeuten geringer als bei enzymatischer Synthese und eine Übertragung in den Großmaßstab wird dadurch aufwendig und teuer (Klaffke, 1994; Khan und Hindsgaul, 1994). Die chemische Synthese bietet jedoch die Möglichkeit funktionelle Gruppen (z.B. Thiol- oder Azidogruppen) in das Molekül einzubringen, die zum Teil durch enzymatische Synthese nicht zugänglich sind (Fu *et al.*, 2003).

Eine Alternative bietet möglicherweise die Enzym-katalysierte *In-vitro*-Synthese der dNDP-Desoxyzucker. Versuche, einige dieser Zuckerbiosynthesegene in dem klassischen Expressionswirt *E. coli* heterolog zu exprimieren, scheiterten jedoch oftmals daran, daß die Streptomyceten-Proteine durch Mißfaltung unlösliche "inclusion bodies" bildeten (pers. Mitteilung Prof. Dr. L. Elling).

Für eine Kooperation mit Prof. Dr. Elling (RWTH Aachen) sollten die drei Enzyme UrdR, AviS bzw. UrdS und AviT aus den Desoxyzuckerbiosynthesewegen von *S. fradiae* Tü2717 und *S. viridochromogenes* Tü57 als Histidin-Fusionsproteine in Mutanten-Stämmen des Urdamycin-Produzenten *S. fradiae* Tü2717 exprimiert werden. Wichtig war dabei, festzustellen, ob sich die Zielproteine in löslicher Form isolieren lassen und wenn möglich zu prüfen, ob die Enzymaktivität durch den Histidin-Tag (His-Tag) beeinträchtigt wird.

Zur Aufklärung der Funktionsweise von Enzymen kann die Kenntnis der dreidimensionalen Enzymstruktur von Nutzen sein. Wenn bekannt ist, welche Proteinstrukturen aufgrund der räumlichen Anordnung in den katalytischen Prozeß eingreifen, können die Enzyme gezielt im Bereich der katalytischen Domäne oder an Substratbindestellen durch Genmanipulation verändert werden.

Im Rahmen dieser Arbeit sollte SimB7, eine Glykosyltransferase aus *S. antibioticus* Tü6040, die C-C-glykosidische Bindungen knüpft, als Histidin-Fusionsprotein überexprimiert werden. Das lösliche Protein sollte für ein Kooperationsprojekt zur Verfügung gestellt werden mit dem Ziel, das Protein zu kristallisieren und die Enzymstruktur mittels Röntgenstrukturanalyse aufzuklären.

3.2.1 Homologe Expression der 4-Ketoreduktase UrdR

3.2.1.1 Erstellung des Plasmids pAF1/urdR

Um das Gen *urdR* mit einem C-terminalen His-Tag zu versehen, wurde es unter Verwendung der Primer PDHF und PDHR ausgehend von einem 2,3 kb großen *Pst*l-Fragment aus dem Urdamycin-Cluster per PCR amplifiziert (s. Abschnitt 2.10.11.3). Das 0,8 kb große PCR-Produkt wurde mit *Hin*dIII und *Spe*l geschnitten und in den Expressionsvektor pUWL201 (geschnitten mit *Hin*dIII/*Xba*l) ligiert. Das resultierende Plasmid wurde pAF1/*urdR* (s. Abb. 6.5 im Anhang) genannt. Das *urdR*-Gen kann durch Restriktion mit *Hin*dIII und *Xba*l entfernt und durch eine andere Gensequenz ersetzt werden. Auf diese Weise eignet sich das Plasmid zur Expression anderer Proteine, die mit einem C-terminalen His-Tag versehen werden sollen.

3.2.1.2 Expression von UrdR in S. fradiae RN-435

Protoplasten der *S. fradiae*-Mutante RN-435, die kein funktionales *urdR*-Gen besitzt, wurden mit pAF1/*urdR* transformiert. Durch Verwendung dieses Mutanten-Stammes war es möglich, zu prüfen, ob das klonierte Gen mit dem C-terminalen His-Tag noch funktional ist.

Abb. 3.6: Strukturformeln von Urdamycin A aus *S. fradiae* Tü2717, von den Verbindungen Rabelomycin, Urdamycin I und J aus der *S. fradiae* RN435-Mutante.

Die RN-435-Mutante ist unfähig, D-Olivose-haltige Urdamycinderivate zu produzieren, da sie den Molekülbestandteil dTDP-D-Olivose nicht synthetisieren kann. Stattdessen wurden im Extrakt der *urdR*-Mutante die zuckerfreien Polyketide Rabelomycin, Urdamycin I und J sowie Urdamycin M, das mit zwei Rhodinose-Molekülen verknüpft ist, nachgewiesen (s. Abb. 3.6; Hoffmeister *et al.*, 2000).

Im Komplementierungsversuch zeigte sich, daß das eingebrachte urdR-Gen den Genverlust in der Mutante ausgleicht und die von UrdR abhängigen Syntheseprozesse wieder stattfinden. Zur Überprüfung wurden jeweils ausgehend von Wildtyp, Mutante und transformierter Mutante Kulturextrakte Extrakte wurden per gewonnen. Die DC aufgetrennt und es war erkennbar, daß die mit pAF1/urdR transformierte Mutante Urdamycin A (gelb), Urdamycin C (rot) und D (blauviolett) (s. Abb. 3.7) in geringem Maß produzierten. Außerdem wurde die Bildung von Urdamycin A per HPLC-Analyse bestätigt. Auf diese Weise konnte die Funktionalität von UrdR mit einem C-terminalen His-Tag nachgewiesen werden.

Abb. 3.7: Dünnschichtchromatogramm. Laufmittel Dichlormethan:Methanol = 9:1. Die Proben stammen von *S. fradiae* (RN-435 transformiert mit pAF1/*urdR* (#5 und #8), RN-435, Wildtyp sowie A0 und A0 mit pAF1/*simB*7 (#3, #6 und #7)).

Um das UrdR-Histidin-Fusionsprotein zu isolieren, wurde die Expression ebenfalls in *S. fradiae* RN-435 durchgeführt. Nach der Anzucht der mit pAF1/*urd*R transformierten Bakterien konnte das Protein isoliert und per Affinitätschromatographie angereichert werden. Nach Auftrennung der gesammelten Fraktionen mittels SDS-PAGE (s. Abb. 3.8) trat im Proteingel in den Elutionsfraktionen eine Proteinbande deutlich hervor, die der berechneten Masse des UrdR-Histidin-Fusionsproteins von ca. 28 kDa entspricht.

S. fradiae RN-435 mit pAF1/urdR

Abb. 3.8: SDS-PAGE. Expression von pAF1/*urdR* in *S. fradiae* RN-435. Detektion der Proteine durch Coomassie-Färbung.

3.2.2 Heterologe Expression der 3-Ketoreduktase AviT

3.2.2.1 Erstellung des Plasmids pAF1/aviT

Zur Expression der 3-Ketoreduktase AviT aus *S. viridochromogenes* Tü57 wurde das Gen per PCR ausgehend von dem Subklon pBSK-4E5 amplifiziert (s. Abschnitt 2.10.11.5). Das 1,0 kb große PCR-Produkt wurde in den Vektor pAF1 ligiert. Für die Klonierung wurden Vektor (pAF1/*urdR*) und Insert jeweils mit *Hin*dIII und *Xba*I geschnitten. Das generierte Plasmid pAF1/*aviT* (s. Abb. 6.9 im Anhang) wurde zur Transformation von Protoplasten der *S. fradiae*-A0-Mutante verwendet.

3.2.2.2 Expression von AviT in S. fradiae A0

In der *S. fradiae* A0-Mutante wurden alle vier Glykosyltransferasegene inaktiviert. Die Mutante synthetisiert überwiegend Urdamycin I und J sowie Rabelomycin anstelle der glykosidierten Urdamycin-Verbindungen (Trefzer *et al.*, 2001). Bei der Auswahl wurde vor allem berücksichtigt, daß vom Vektor pUWL201 abgeleitete Expressionsplasmide in *S. fradiae*-Stämmen gut repliziert werden und sie außerdem gute Transformationsraten aufweisen.

Die Expression von AviT sollte keinen Einfluß auf das Produktspektrum der Mutante haben, da das zu *aviT* homologe Gen *urdT* in der A0-Mutante nicht verändert wurde. Die Enzymaktivität von AviT kann folglich nicht durch Expression von AviT in *S. fradiae* A0 anhand des Kulturextraktes nachgewiesen werden.

Der mit pAF1/*aviT* transformierte *Streptomyces*-Stamm A0 wurde vier Tage in CRM-Medium kultiviert, um die Bakterienzellmasse zur Proteinextraktion zu nutzen. Zum Nachweis des His-Tag-AviT-Fusionsproteins wurden die Proteine per Affinitätschromatographie ausgehend

von dem Bakterienzell-Lysat aufgereinigt. Nach der elektrophoretischen Auftrennung der Proteine in trat den Elutionsfraktionen eine deutliche Proteinbande hervor (s. Abb. 3.9). Der Vergleich mit dem Größenstandard zeigte, daß es sich dabei um das etwa 37 kDa große AviT mit His-Tag handelt.

Abb. 3.9: SDS-PAGE. Expression von pAF1/*aviT* in *S. fradiae* A0. Detektion der Proteine durch Coomassie-Färbung.

3.2.3 Heterologe Expression der 2,3-Dehydratase AviS

3.2.3.1 Erstellung des Plasmids pAF1/aviS

Um das Gen *aviS* aus *S. viridochromogenes* Tü57, das für eine 2,3-Dehydratase codiert, heterolog zu exprimieren, wurde es zunächst per PCR amplifiziert (s. Abschnitt 2.10.11.4). Das 1,4 kb große PCR-Produkt wurde durch Restriktion mit *Hin*dIII und *Xba*I für die Ligation vorbereitet. Das Plasmid pAF1/*urdR* (s. Abb. 6.5 im Anhang) wurde auch mit diesen Restriktionsendonukleasen gespalten, wobei das Gen *urdR* aus dem Plasmid entfernt wurde. Nach erfolgreicher Ligation von pAF1 mit dem *aviS*-Insert wurde das entstandene Plasmid pAF1/*aviS* (s. Abb. 6.8 im Anhang) zur Protoplastentransformation der A0-Mutante (*S. fradiae*) eingesetzt.

3.2.3.2 Expression von AviS in S. fradiae A0

Die A0-Mutante kann durch AviS nicht komplementiert werden, da bei ihr die Zuckerbiosynthesegene intakt sind und lediglich die Glykosyltransferasen fehlen (s. Abschnitt 3.2.2.2). Also läßt sich zwar die Expression von *aviS* überprüfen, aber der Nachweis der Enzymfunktion ist auf diese Weise nicht zu erbringen. Eine weitere Methode, die Enzymaktivität der veränderten Proteine nachzuweisen, wäre die enzymatische Umsetzung eines geeigneten Substrats.

Zur Isolierung und Aufreinigung von AviS wurde zunächst ein Klon vier Tage in CRM-Medium kultiviert. Das His-Tag-AviS-Fusionsprotein sollte durch Affinitätschromatographie angereichert und gereinigt werden. Bei Betrachtung der aufgetrennten Banden im Proteingel konnte keine stärker ausgeprägte Bande ausgemacht werden, die etwa der Proteingröße von 53 kDa entsprach. Um auszuschließen, daß ein "falsch positiver" Klon, Ursache für das schlechte Expressionsresultat war, wurde ein weiterer transformierter Klon zur Proteinextraktion herangezogen. Nach Auftrennung der Proteine fiel in den Elutionsfraktionen eine Bande auf, die etwa die Laufhöhe des 45 kDa-Proteins im Größenstandard aufwies. Diese Größe weicht deutlich von der errechneten Größe von 53 kDa für AviS mit His-Tag ab. Eine analoge Bande ist im Proteinspektrum der nicht transformierten A0-Mutante nicht zu erkennen. Letztendlich wurde zur Klärung ein Western-Blot unter Verwendung eines Hexahistidin-spezifischen Antikörpers durchgeführt. Dazu verwendete Carsten Rupprath aus der Arbeitsgruppe von Prof. Dr. Elling (RWTH Aachen) den Proteinrohextrakt und die unlöslichen Zellbestandteile aus zwei S. fradiae-Klonen mit pAF1/aviS. Dieser Versuch ergab, daß die Streptomyces-Klone kein nachweisbares Protein mit His-Tag bildeten.

3.2.4 Homologe Expression der 2,3-Dehydratase UrdS

3.2.4.1 Erstellung des Plasmids pAF2/urdS

Die Expression von AviS mit C-terminalem His-Tag konnte nicht nachgewiesen werden. Es wurde nun mit der zu AviS homologen 2,3-Dehydratase UrdS aus *S. fradiae* Tü2717 gearbeitet, da eine *urdS*-Mutante von *S. fradiae* Tü2717 zur Verfügung stand, die eine Aktivitätsprüfung des Histidin-UrdS-Proteins durch Komplementierung erlaubte. Das Gen *urdS* wurde per PCR amplifiziert und durch entsprechende Primer mit Codonen für einen N-terminalen His-Tag versehen (s. Abschnitt 2.10.11.7). Das PCR-Produkt wurde über die *Eco*RI- und *Xba*I-Schnittstelle in den Vektor pUWL201 integriert. Der so entstandene Vektor wurde pAF2/*urdS* (s. Abb. 6.6 im Anhang) genannt.

Dieser Vektor eignet sich dazu, auch andere Proteine mit einem N-terminalen His-Tag zu versehen, wobei das entsprechende Gen per PCR am 5'-Ende mit einer *Bam*HI-Schnittstelle und am 3'-Ende mit einer *Xba*I-Schnittstelle versehen werden muß.

3.2.4.2 Erstellung des Plasmids pAF3/urdS

Bei Verwendung von pAF2/*urdS* in der *urdS*-Mutante *S. fradiae* urdSpm konnte keine Expression von UrdS mit N-terminalem His-Tag festgestellt werden (s. Abschnitt 3.2.4.3). Für einen weiteren Versuch wurde das Plasmid pAF3/*urdS* generiert. Das Plasmid ermöglicht es, den N-terminalen His-Tag nach Aufreinigung des Proteins per Affinitätschromatographie durch Verwendung von Thrombin abzuspalten. Zu diesem Zweck wurde das Fusionsprotein um eine Thrombin-Erkennungsstelle zwischen dem His-Tag und dem eigentlichen N-Terminus des Enzyms erweitert. Dazu wurde ein von pAF2/*urdS* abgeleitetes Plasmid erstellt. Per PCR wurde ein 0,5 kb-Teilstück aus dem Vektor pET-28a(+) (Novagen) amplifiziert, das für einen N-terminalem His-Tag und eine Thrombin-Erkennungsstelle codiert (s. Abschnitt 2.10.11.8).

Das synthetisierte PCR-Produkt wurde mit *Eco*RI und *Bam*HI geschnitten. Der Vektor pAF2/*urdS* wurde ebenfalls mit *Eco*RI und *Bam*HI geschnitten. Dabei fiel ein 46 bp-Fragment, welches die Ribosomenbindestelle, das Start-Codon und den His-Tag enthält, heraus. Die übrige Vektor-DNA (8,3 kb) wurde mit dem PCR-Amplifikat ligiert, so daß das Plasmid pAF3/*urdS* (s. Abb. 6.7) gebildet wurde. Dieses Plasmid wurde im Rahmen dieser Arbeit nicht mehr zur Transformation eingesetzt, da AviS in der Zwischenzeit von den Kooperationspartnern in löslicher Form exprimiert werden konnte (pers. Mitteilung Prof. Dr. Elling).

3.2.4.3 Expression von UrdS in S. fradiae $\Delta urdS$

Die Expressionsversuche mit *urdS* wurden mit dem Wirtsstamm *S. fradiae* urdSpm durchgeführt, der im folgenden auch als *S. fradiae* $\Delta urdS$ bezeichnet wird. Diese Mutante entstand durch das Einfügen von vier zusätzlichen Nukleotiden im Bereich einer

Ncol-Restriktionsschnittstelle in der *urdS*-Gensequenz (Domann, 2000). Diese Veränderung führte zu einer Leserasterverschiebung, wodurch die *urdS*-Mutante laut Hoffmeister *et al.* (2000) keinerlei Urdamycinderivate mehr akkumuliert. Die Expression von UrdS sollte zur Komplementierung der *urdS*-Mutante *S. fradiae* urdSpm führen.

Ausgehend von einer Einzelkolonie wurde eine Kultur der *urdS*-Mutante zur Protoplastierung angezogen. Nach erfolgreicher Transformation der Bakterien mit pAF2/*urdS* sollte die Komplementierung der Mutante überprüft werden. Die dünnschichtchromatographisch aufgetrennten Kulturextrakte aus sechs transformierten Mutanten, drei untransformierten Mutanten und drei Wildtyp-Kulturen lieferten widersprüchliche Resultate

(s. Abb. 3.10).

Abb. 3.10: Dünnschichtchromatogramm. Laufmittel Dichlormethan:Methanol = 9:1. Die Proben stammen von *S. fradiae* $\Delta urdS$ (1-3), *S. fradiae* Wildtyp (1-3) sowie *S. fradiae* $\Delta urdS$ mit pAF2/*urdS* (1-6).

Nur einer der sechs Kulturextrakte aus den mit pAF2/urdS transformierten Mutanten führte nach Auftrennung per DC zu einem erkennbaren Produkt, das als blaßgelber Fleck hervortrat. Bei den übrigen fünf Plasmid-tragenden Klonen war keine Antibiotikaproduktion erkennbar. Die drei nicht transformierten *urdS*-Mutanten verhielten sich uneinheitlich bezüglich der Sekundärstoffproduktion. In einem Fall war keine Produktion erkennbar, eine Mutante wies einen ähnlichen gelben Fleck auf, wie zuvor beschrieben, und im dritten Kulturextrakt waren mehrere farbige Flecken (gelblich und rötlich-violett) erkennbar, die

auch im Wildtyp-Extrakt zu finden waren, wobei es sich um Urdamycine des A-, C- bzw. D-Typs handeln könnte. Von diesen drei untersuchten *urdS*-Mutanten war keine identisch mit der zur Protoplastierung verwendeten Mutante.

Um das Phänomen zu ergründen, wurden weitere Klone der *urdS*-Mutante angezogen. Nach Auftrennung per DC waren ungewöhnlicherweise in den Kulturextrakten von *S. fradiae* $\Delta urdS$ erneut Urdamycinderivate feststellbar (ohne Abb.). Die sechs untersuchten $\Delta urdS$ -Klone zeigten allerdings keine einheitliche Syntheseleistung. Es wurden teilweise Urdamycinderivate synthetisiert und zum Teil wurde kein erkennbares Produkt gebildet.

Um zu gewährleisten, daß es sich bei dem verwendeten Stamm um die *urdS*-Mutante handelt, wurden sechs nicht transformierte $\Delta urdS$ -Klone, sechs mit pAF2/urdS transformierte $\Delta urdS$ -Klone und zwei *S. fradiae*-Wildtyp-Mischkulturen per PCR überprüft. Dazu wurde mit den Primern urdS3-B und urdS5-B eine "Kolonien-PCR" mit anschließender *Ncol*-Restriktion der PCR-Produkte durchgeführt, wie es in der Dissertation von Silvie Domann (2000) beschrieben ist. In allen Fällen, bis auf einen getesteten Wildtyp-Ansatz, konnte ein 1,2 kb-Fragment amplifiziert werden. Lediglich die aus dem Wildtyp amplifizierte DNA ließ sich mittels *Ncol* schneiden, so daß ein 760 bp- und ein 440 bp-Fragment entstanden. Die übrigen PCR-Amplifikate waren nicht schneidbar, was bestätigt, daß die Mutanten im Bereich der *urdS*-internen *Ncol*-Schnittstelle tatsächlich eine Mutation aufweisen.

Zwei mit pAF2/*urdS* transformierte Mutanten wurden in CRM-Medium angezogen, um aus den Zellpellets Proteine zu gewinnen. Die Anreicherung des Histidin-Fusionsproteins erfolgte mittels Affinitätschromatographie. Die anschließend durchgeführte SDS-PAGE verdeutlichte,

daß sich das gewünschte 53 kDa-Protein UrdS nicht aus Rohextrakt aufreinigen dem ließ (s. Abb. 3.11). Um Fehler Aufreinigung bei der ausschließen zu können, wurden Anzucht und Proteinisolierung wiederholt. Das Resultat war erneut negativ. Die Sequenzdaten sprechen dafür, daß urdS korrekt im Plasmid vorliegt und exprimierbar sein müßte.

Abb. 3.11: SDS-PAGE. Expression von pAF2/urdS in *S. fradiae* $\Delta urdS$. Detektion der Proteine durch Coomassie-Färbung.

Nachdem Mitarbeiter des AK Prof. Dr. Elling AviS in löslicher Form aus *E. coli* isolieren konnten, wurden die zuvor beschriebenen Expressionsversuche abgebrochen. Die *urdS*-Mutante (urdSpm) erscheint als Expressionswirt wenig geeignet, da sie entgegen früheren Untersuchungen doch Urdamycinderivate produzieren kann. Es bleibt unklar, ob der verwendete Stamm der *urdS*-Mutante entspricht oder ob weitere Mutationen vorliegen.

3.2.5 Heterologe Expression der Glykosyltransferase SimB7

Streptomyces antibioticus Tü6040 ist der Produzent der sogenannten Simocyclinone. Das Hauptprodukt ist Simocyclinon D8, das antibakteriell und zytostatisch wirksam ist. (Schimana *et al.*, 2000) Am Molekülaufbau ist u.a. die Glykosyltransferase SimB7 beteiligt, das die Übertragung des Didesoxyzuckers D-Olivose auf das C9-Atom des Polyketids katalysiert (s. Abb. 3.12; Trefzer *et al.*, 2002).

Abb. 3.12: Molekülaufbau des Simocyclinons D8 aus *S. antibioticus* Tü6040; **A:** angucyclisches Polyketid; **B:** D-Olivose; **C:** Tetraen-Seitenkette; **D:** halogeniertes Aminocumarin. SimB7 katalysiert die Verknüpfung von dNDP-D-Olivose mit dem Angucyclinon (nach Trefzer *et al.*, 2002)

3.2.5.1 Erstellung des Plasmids pAF1/simB7

Unter Verwendung eines *Pst*I-Fragmentes aus dem Simocyclinon-Cluster als Template-DNA wurde *simB7* per PCR amplifiziert (s. Abschnitt 2.10.11.6). Das 1,2 kb große PCR-Produkt wurde mit *Hin*dIII und *Xba*I geschnitten. Aus dem Plasmid pAF1/*urdR* wurde durch Restriktion mit *Hin*dIII und *Xba*I die für *urdR* codierende DNA-Sequenz entfernt. Nach der Ligation von Vektor und Insert konnte das entstandene Plasmid pAF1/*simB7* (s. Abb. 6.10 im Anhang) zur Protoplastentransformation der *S. fradiae*-A0-Mutante verwendet werden.

3.2.5.2 Expression von SimB7 in S. fradiae A0

Von den mit pAF1/*simB7* transformierten A0-Mutanten wurden aus zwei unabhängigen Ansätzen drei bzw. acht Klone kultiviert. Nach 6-tägigem Wachstum wurden jeweils 2 ml Kulturlösung mit Ethylacetat ausgeschüttelt. Der trockene Extrakt wurde in 50 µl Methanol aufgenommen. Bei der Auftrennung mittels Dünnschichtchromatographie waren zwischen den ersten drei transformierten A0-Mutanten, Wildtyp und A0-Mutante aufgrund der geringen Konzentration im Kulturextrakt kaum Unterschiede erkennbar (rechts in Abb. 3.7). Die Analyse per HPLC ergab, daß die Klone mit dem Plasmid pAF1/*simB7* geringe Mengen eines D-Typ-Urdamycins produzieren können.

Nach der dünnschichtchromatographischen Auftrennung der Extrakte aus den anderen acht Kulturmedien (ohne Abb.) konnte in sechs Fällen die Synthese der glykosidierten Verbindungen Urdamycinon D, Urdamycinon B, Urdamycinon C und Aquayamycin nachgewiesen werden (Strukturformeln s. Abb. 3.13).

Abb. 3.13: Strukturformeln einiger Urdamycin-Verbindungen. Die Urdamycine B, C und D lassen sich aus dem Wildtyp S. fradiae Tü2717 isolieren. Die entsprechenden Urdamycinone B, C und D sowie Aquayamycin, können nach Expression von SimB7 in S. fradiae A0 im Kulturextrakt detektiert werden.

Zur Isolierung des SimB7-Proteins wurden die transformierten Streptomyceten 4 Tage in

S. fradiae A0 mit pAF1/simB7

CRM-Medium angezogen. Das mittels Affinitätschromatographie angereicherte Enzym SimB7 mit His-Tag trat im Proteingel (s. Abb. 3.14) als deutliche Bande in den Elutionsfraktionen hervor. Die berechnete Proteingröße beträgt etwa 42 kDa, was der Laufhöhe des Proteins im SDS-Polyacrylamid-Gel entspricht.

Abb. 3.14: SDS-PAGE. Expression von pAF1/*simB7* in *S. fradiae* A0. Detektion der Proteine durch Coomassie-Färbung.

3.3 Expression von Sus1 und Synthese eines Codon-optimierten Gens

3.3.1 Saccharosesynthase

Die Saccharosesynthase (Susy = *sucrose synthase*) ist ein Enzym, das im pflanzlichen Kohlenhydratstoffwechsel eine wichtige Rolle einnimmt. Die katalysierte Reaktion ist die Spaltung des Transportmetaboliten Saccharose unter Einbau eines Nukleosiddiphosphates zu dNDP-Glucose und Fructose (s. Abb. 3.15) oder die entsprechende Rückreaktion (Pontis *et al.*, 1981). Während *in vitro* sowohl Hin- als auch Rückreaktion ablaufen, deuten Untersuchungen an *Arabidopsis thaliana* an, daß die Saccharosesynthase *in vivo* nur am Saccharoseabbau beteiligt ist (Avigad, 1982).

Es wurde festgestellt, daß das Enzym zwar unterschiedliche Nukleosiddiphosphate akzeptiert, die Akzeptanz jedoch unterschiedlich stark ausgeprägt ist (Römer *et al.*, 2004). Die katalytische Umsetzung der Saccharosesynthase 1 (Sus1) aus der Kartoffel (*Solanum tuberosum*) ist am höchsten, wenn das natürliche Substrat UDP zur Verfügung steht. In Relation zu UDP beträgt die Enzymaktivität 34 % bei Zugabe von dTDP, 12 % bei ADP und 0,5 %, wenn CDP oder GDP als Nukleosiddiphosphat zur Verfügung stehen. Auch bei der Synthesereaktion zeigt Sus1 ein analoges Aktivitätsmuster mit der höchsten Aktivität für das Substrat UDP-Glucose (Römer *et al.*, 2004).

Abb. 3.15: Umsetzung von Saccharose zu Fructose und dTDP-D-Glucose durch Sus1 unter Einbezug der dTDP-D-Olivose- und dTDP-2-Desoxy-D-evalose-Biosynthese in *S. viridochromogenes* Tü57. **Sus1 =** Saccharosesynthase; **AviD** = dTDP-Glucose-Synthase.

Durch Überexpression der Saccharosesynthase 1 aus *Solanum tuberosum* in *S. viridochromogenes* Tü57 soll die Synthese von dTDP-D-Glucose verstärkt werden. Die Aktivität des Enzyms könnte auch Auswirkung auf die Desoxyzuckerbiosyntheserate haben und Sus1 bietet die Möglichkeit Saccharose anstelle von Glucose als Substrat zu nutzen.

Um die Aktivität der heterolog exprimierten Saccharosesynthase leichter überprüfen zu können, wurde eine *aviD*-Deletionsmutante ausgehend von *S. viridochromogenes* Tü57 hergestellt. In der *aviD*-Mutante würde theoretisch die Synthese von 2-Desoxy-D-evalose und D-Olivose, die Bestandteil des Avilamycin-Moleküls sind, unterbrochen oder eingeschränkt, wenn nicht aus anderen Stoffwechselprozessen dTDP-D-Glucose zur Verfügung steht (s. Abb. 3.15). Die Avilamycin-Biosynthese würde also erheblich beeinträchtigt. Sus1 sollte in der *aviD*-Mutante auf Funktionalität getestet werden, da bei ausreichender Versorgung mit den Substraten Saccharose und dTDP eine Komplementierung der Mutante erwartet wurde. Die dann wieder stattfindende Avilamycin-Produktion wäre durch Analyse des Kulturextraktes nachweisbar.

3.3.2 Saccharose als C-Quelle

Zur Funktionsprüfung der Saccharosesynthase Sus1 nach dem Expressionsversuch in einer S. viridochromogenes-Mutante sollte der Expressionswirt idealerweise Saccharose aus dem Kulturmedium als Substrat nutzen können. Es ist bislang unklar, ob Streptomyceten ein Aufnahmesystem für Saccharose besitzen. Der einzige Vertreter aus der Gattung Streptomyces, der bisher hinsichtlich eines möglichen Transportsystems für Zuckerverbindungen untersucht wurde, ist S. coelicolor A3(2). Parche et al. (2000) untersuchten das Phosphotransferase-System (PTS) von S. coelicolor. Das PTS ist bei anderen Bakterienarten (z.B. E. coli) an der Aufnahme von Kohlenhydraten sowie an regulatorischen Prozessen beteiligt (Postma et al., 1993; Stülke und Hillen, 1998).

Um festzustellen, ob *S. viridochromogenes* Tü57 prinzipiell in der Lage ist, Saccharose in die Zelle aufzunehmen, wurden die Bakterien in Minimalmedium mit reiner Saccharose als einziger C-Quelle kultiviert. Zur Kontrolle wurde ein Ansatz Minimalmedium ohne Zusatz von Saccharose ebenfalls mit Streptomyceten beimpft. Nach Inkubation für zwei bis vier Tage bei 37 °C und 180 rpm war deutlich zu erkennen, daß im Kolben ohne Saccharose kein Bakterienwachstum möglich war. In den Kolben, die Saccharose enthielten, konnten die Bakterien entweder durch Aufnahme der Saccharose ins Zellinnere oder durch Aufnahme der daraus hervorgehenden Monosaccharide ihren Kohlenstoffbedarf decken.

3.3.3 Inaktivierung von aviD

AviD katalysiert als dTDP-Glucose-Synthase einen frühen Reaktionsschritt innerhalb des Desoxyzuckerbiosyntheseweges (s. Abb. 1.6 und Abb. 4.4; Weitnauer *et al.*, 2001b). Die Synthese von dTDP-Glucose sollte durch Generierung einer entsprechenden Mutante unterbunden oder wenigstens reduziert werden.

3.3.3.1 Erstellung des Plasmids pSP1/aviD-S

Um eine *aviD*-Deletionsmutante zu generieren, wurde ein 2,8 kb großes PCR-Fragment amplifiziert, welches *aviD* (1068 bp) beinhaltet. Das Fragment wurde nach Restriktion mit *Bam*HI und *Hin*dIII in den vorbereiteten Vektor pUC19 (geschnitten mit *Bam*HI und *Hin*dIII) ligiert.

Ausgehend von dem neuen Plasmid pUC19/*aviD* wurde per Restriktion mit *Sac*II ein 291 bp-Fragment ausgeschnitten. Das verbliebene Plasmid wurde religiert, so daß das Gen eine *inframe*-Deletion von 291 bp erhält (s. Abb. 3.16).

Abb. 3.16: Übersichtsskizze zur Herstellung eines Inaktivierungskonstruktes für *aviD*. Im oberen Teil der Abbildung ist das 2,8 kb große PCR-Fragment gezeigt. Neben dem vollständigen Gen *aviD* wurden Teile der Gene *aviM* und *aviE1* amplifiziert. Nach Restriktion mit *Hin*dIII und *Bam*HI wurde das Fragment zur weiteren Bearbeitung in den Vektor pUC19 ligiert. Durch Restriktion mit *Sac*II und anschließende Religation wurde ein 291 bp-Fragment entfernt. Das Konstrukt mit dem verkürzten Gen ist im unteren Teil der Abbildung dargestellt.

Das pUC19/*aviD*-S genannte *Sac*II-Deletionskonstrukt wurde unter Verwendung des Primers aviD-BS1 sequenziert. Die Deletion des 291 bp-*Sac*II-Fragments wurde dadurch bestätigt.

Das Gen *aviD-S* und die benachbarten Bereiche wurden mit *Hin*dIII und *Eco*RI ausgeschnitten und in den mit *Pst*I und *Eco*RI geschnittenen Vektor pSP1 überführt. Zuvor wurde das Klenow-Fragment eingesetzt, um an Vektor und Insert glatte Enden zu erzeugen. Durch die Ligation entstand das Inaktivierungsplasmid pSP1/*aviD-S* (s. Abb. 6.2 im Anhang).

3.3.3.2 Transformation von S. viridochromogenes Tü57

Das entstandene Inaktivierungsplasmid pSP1/*aviD-S* wurde zur Transformation von *S. viridochromogenes* Tü57-Protoplasten verwendet. Das Plasmid mit dem mutierten Sequenzabschnitt sollte durch homologe Rekombination ins bakterielle Genom integrieren. Die Selektion "positiver" Klone wird dabei durch die Vermittlung einer Antibiotikums-Resistenz (Erythromycin) durch pSP1 vereinfacht. Nach der Transformation wuchsen je Platte ca. 20 Streptomyceten-Klone. Acht Klone wurden per Kolonien-PCR überprüft und erwiesen sich als Integrationsmutanten.

Eine Integrationsmutante wurde für die Passagierung und das Screening nach einer Doppel-*Crossing-over*-Mutante ausgewählt. Jeder Passagierungsschritt umfaßte eine Anzucht in Flüssig- und auf Festmedium. Schon nach der 3. Passage gab es fünf Klone, die Erythromycin-sensibel waren. Nach der 4. Passage kamen acht weitere Klone hinzu.

3.3.3.3 Prüfung der Mutanten per PCR

Im Falle eines *Single-Crossing-overs* ergibt die PCR mit den Primern aviD-F2/aviD-R2 ein 949 bp- und ein 1240 bp-Fragment, da zwei unterschiedliche Allele des *aviD*-Gens vorliegen. Beim Wildtyp sollte sich nur das 1240 bp-Fragment amplifizieren lassen, während sich bei einer Doppel-*Crossing-over*-Mutante nur noch ein 949 bp-PCR-Produkt synthetisieren lassen sollte.

Die Überprüfung der Klone per Kolonien-PCR lieferte positive Resultate. Bei den *Single-Crossing-over*-Mutanten ließ sich allerdings meist nur eines der beiden möglichen Fragmente amplifizieren. Daher war das Vorhandensein von nur einem 949 bp-Fragment nicht zwangsläufig als Doppel-*Crossing-over* zu werten.

3.3.3.4 Prüfung der Mutanten per Southern-Hybridisierung

Um abzusichern, daß Doppel-*Crossing-over*-Mutanten vorliegen, wurde zusätzlich eine Southern-Hybridisierung durchgeführt. Dazu wurde die genomische DNA des *S. viridochromogenes*-Wildtyps, einer Integrationsmutante und von drei möglichen Doppel-

Crossing-over-Mutanten isoliert und jeweils mit *Sma*l geschnitten. Das intakte Gen *aviD* enthält diese Schnittstelle, während sie im verkürzten Gen *aviD-S* fehlt. Als Sonde diente ein Digoxigenin-markiertes 2,05 kb-Fragment aus dem Inaktivierungskonstrukt pSP1/*aviD-S*, welches durch Restriktion mit *Sma*l erhalten wurde.

Der Blot (Abb. 3.17) lieferte leider kein Signal für die Wildtyp-DNA. Bei der Sondenkontrolle ist ein deutliches Signal von ca. 2 kb zu sehen. Die übrigen Signale stammen von den drei zu prüfenden *aviD*-Mutanten 3-27, 4-58 und 3-69. Ein etwa 3,2 kb großes DNA-Fragment aus den drei genannten Mutanten hybridisiert jeweils mit der Sonden-DNA.

Abb. 3.17: Signale des Southern Blots zum Nachweis der *aviD*-Integrations- bzw. Doppel-*Crossing-over*-Mutanten. Mittels Röntgenfilm waren die Signale des Größenstandards, der Integrationsmutante Nr. 47, der drei Mutanten 3-27, 4-58 und 3-69 sowie der Sondenkontrolle detektierbar. Der rote Pfeil deutet auf die Laufhöhe der DNA bei ca. 2 kb. Der orangene Pfeil weist auf die ca. 3,2 kb-Bande der *aviD*-Mutanten und die gelben Pfeile weisen auf die drei Banden der *Single-Crossing-over*-Mutante.

Die Auswertung (s. Tab. 3.6) hat ergeben, daß alle drei überprüften Klone nur noch das verkürzte Gen *aviD-S* enthalten und es sich folglich um die gewünschte *aviD*-Mutante handelt. Die drei Signale, die bei der Integrationsmutante auftraten, entsprachen in zwei Fällen den erwarteten Fragmentgrößen von 1,5 kb und 3,2 kb. Das dritte zu erwartende Fragment hatte eine berechnete Größe von etwa 0,9 kb. Stattdessen trat ein Signal bei etwa 1,8 kb auf. Leider war ein Vergleich mit dem Wildtyp nicht möglich, da die eingesetzte DNA-Menge zu gering war. Vielleicht handelt es sich bei dem 1,8 kb-Signal um ein Artefakt und die 0,9 kb-Bande ist wegen der starken Schwärzung nicht erkennbar.

Probe	Erwartete Fragmente	Ergebnis des Blots				
Wildtyp	846 bp und 2638 bp	kein Signal				
Integrationsmutante	846 bp, 2048 bp und 2638 bp oder 846 bp, 1493 bp und 3193 bp	etwa 1,5 kb, 1,8 kb und 3,2 kb				
aviD-Mutante	3193 bp	3,2 kb				
Sondenkontrolle	2048 bp	2,0 kb				

Tab. 3.6: Berechnete und erhaltene Fragmentgrößen aus der Southern-Hybridisierung von genomischer DNA aus S. viridochromogenes (Wildtyp und Mutanten) nach Restriktion mit Smal.

Für die weitere Arbeit wurde ein Klon (Nr. 3-27) ausgewählt. Ausgehend von dieser *aviD*-Mutante wurden Protoplasten hergestellt und mit pSETerm/*aviD* bzw. pSET152/*aviD* (Komplementierung), pSETerm/*susy* oder dem Vektor pSETerm (als Negativkontrolle), transformiert.

3.3.3.5 Analyse der Produkte von S. viridochromogenes $\Delta aviD$

Die *aviD*-Mutanten sollten hinsichtlich ihrer Fähigkeit, Avilamycin zu produzieren, untersucht werden. Dazu wurden fünf Mutanten zusammen mit dem *S. viridochromogenes* Tü57-Wildtyp im SG-Produktionsmedium angezogen.

Ein Teil des Kulturextraktes wurde für die DC-Analyse eingesetzt. Nur im Wildtyp-Extrakt konnten auf der DC-Platte (ohne Abb.) nach Behandlung mit Anisaldehyd-Schwefelsäure-Reagenz Avilamycine durch die charakteristische Schwarzfärbung nachgewiesen werden. In den Extrakten der fünf getesteten Mutanten konnte kein Avilamycin nachgewiesen werden.

Die Extrakte wurden zusätzlich mittels Agardiffusionstest auf ihre Aktivität gegen *B. subtilis* getestet. Hemmhöfe traten nur beim Avilamycin-Standard (Eli-Lilly) und bei dem Wildtyp-Extrakt auf. Der Extrakt aus den *aviD*-Mutanten zeigte keine biologische Aktivität gegenüber dem Testkeim. Die Avilamycin-Produktion ist also wie erwartet in den getesteten $\Delta aviD$ -Klonen zusammengebrochen.

3.3.4 Komplementierung der aviD-Mutante

Die zuvor beschriebene *aviD*-Mutante sollte unter Verwendung von geeigneten Plasmiden mit *aviD* bzw. *sus1* komplementiert werden. Die Expression von AviD dient der Absicherung, daß der Zusammenbruch der Avilamycin-Biosynthese allein durch die *aviD*-Inaktivierung verursacht wurde. Die Expression von Sus1 soll ebenfalls in der *aviD*-Mutante durchgeführt werden. Falls die Saccharosesynthase Sus1 funktional exprimierbar wäre, müßte dies zur Synthese von dTDP-D-Glucose führen. Dies würde den unterbrochenen Biosyntheseweg komplementieren und zur Produktion von Avilamycin führen.

3.3.4.1 Erstellung des Plasmids pSETerm/aviD

Das Gen, das für die dTDP-Glucose-Synthase AviD codiert, wurde ausgehend von dem Cosmid-Subklon P2S11 aus *S. viridochromogenes* Tü57 per PCR amplifiziert. Das 1,2 kb große PCR-Produkt wurde durch die Primer aviD_*Nde*l und aviD_*Xba*l an den Enden mit Restriktionsschnittstellen versehen. Nach Restriktion von Vektor und PCR-Produkt mit *Nde*l und *Xba*l wurde *aviD* in den Vektor pSET-1cerm ligiert. Das im Vektor vorliegende *urdGT1c*-Gen wurde durch die Restriktion entfernt. Das fertiggestellte Expressionsplasmid pSETerm/*aviD* (ohne Abb.) wurde zur Transformation von Protoplasten der *aviD*-Mutante verwendet.

3.3.4.2 Erstellung des Plasmids pSET152/aviD

Nach der Feststellung, daß sich die mit pSETerm/aviD transformierte aviD-Mutante nicht komplementieren ließ, wurde ein zweites Expressionsplasmid mit aviD erstellt. In diesem Fall wurde per Restriktion mit *Eco*RI und *Bam*HI ein 5 kb großes Fragment aus dem Cosmid-Subklon P2S11 ausgeschnitten. Neben aviD enthält dieses Fragment auch das vollständige Gen aviE1 sowie einen Teil des Gens aviM und die aviD-Promotor-Region. Nach Ligation von Vektor und Insert wurde das resultierende Plasmid pSET152/aviD (s. Abb. 6.3 im Anhang) zur Protoplastentransformation der aviD-Mutante verwendet.

3.3.4.3 Erstellung des Plasmids pSETerm/susy

Das Intron-freie Saccharosesynthasegen *sus1_Soltu* wurde mit *Ncol* und *Bam*HI aus dem Plasmid pTSSuc (bereitgestellt von Thomas Schumacher, AK Prof. Dr. L. Elling) geschnitten und in den Vektor pSET-1cerm eingefügt. Um das Gen *urdGT1c* aus dem Vektor zu entfernen, wurde eine Restriktion mit *Bg*/II und *Nde*I durchgeführt. Die 5'-Überhänge wurden jeweils mittels Klenow-Fragment aufgefüllt. Nach der Ligation wurde die Orientierung des Inserts geprüft. Das entstandene Expressionsplasmid pSETerm/*susy* (s. Abb. 6.11 im Anhang) wurde zur Transformation von Protoplasten der *aviD*-Mutante verwendet.

3.3.4.4 Expression von AviD in S. viridochromogenes ∆aviD

Fünf Klone, die das Plasmid pSETerm/*aviD* aufgenommen hatten, wurden kultiviert, um festzustellen, ob sich die *aviD*-Mutante komplementieren läßt. Zum Vergleich wurden eine Wildtyp-Kultur (*S. viridochromogenes Tü57*) und zwei mit pSET152 transformierte *aviD*-Mutanten angezogen. Die aus diesen Kulturen isolierten Extrakte wurden mittels DC und Agardiffusionstest mit dem Testkeim *B. subtilis* untersucht. Es konnte mit Ausnahme der Wildtyp-Kultur kein Avilamycin im Kulturextrakt festgestellt werden.

Die Gensequenz von *aviD* wurde ausgehend von dem Plasmid pUCPU21/*aviD* sequenziert und auf eventuelle PCR-Fehler überprüft. Die Sequenz entsprach der bekannten Wildtyp-Sequenz. Außerdem wurde per Kolonien-PCR geprüft, ob die untersuchten Transformanten tatsächlich das Plasmid pSETerm/*aviD* tragen. Dazu wurden die Primer Ap1 und Ap2 (zur Verfügung gestellt von Corina Bihlmaier) eingesetzt, die am Apramycin-Resistenzgen des Plasmids pSETerm binden. Das amplifizierte PCR-Produkt wies die erwartete Größe von 0,55 kb auf.

Nach erfolgreicher Transformation der *aviD*-Mutanten mit dem zweiten Expressionsplasmid pSET152/*aviD* mit *aviD* unter Kontrolle des nativen Promotors wurden acht Kulturen angeimpft. Dabei handelte es sich um fünf Transformanten mit pSET152/*aviD*, zwei

Transformanten mit pSETerm und den Wildtyp. (Das Plasmid pSETerm enthält zwar den *ermE* up-Promotor, entspricht ansonsten pSET152 und dient daher als Negativkontrolle.) Nach sechs Tagen Inkubation in 30 ml SG-Medium wurden jeweils 3 ml der Kultur mit 3 ml Ethylacetat ausgeschüttelt. Der trockene Extrakt wurde in Methanol aufgenommen und für die DC-Analytik eingesetzt. Drei der getesteten Klone wurden durch das Konstrukt pSET152/aviD komplementiert und produzieren wieder Avilamycin, wie bei der DC-Untersuchung gezeigt werden konnte (s. Abb. 3.18).

Abb. 3.18: Dünnschichtchromatogramm zum Nachweis der aviD-Komplementierung. Die Avilamycine sind nach Behandlung der DC-Platte mit Anisaldehyd-Schwefelsäure an ihrer Schwarzfärbung erkennbar.

3.3.4.5 Expression der Saccharosesynthase Sus1 in S. viridochromogenes *AaviD*

Die mit pSETerm/susy transformierten Streptomyceten wurden in SG-Medium mit Saccharose-Zusatz kultiviert. Aus den Kulturen wurde mit Ethylacetat extrahiert und der Extrakt mittels Dünnschichtchromatographie aufgetrennt. Weder für die *aviD*-Mutante noch für die mit pSETerm/susy transformierten Mutanten konnte Avilamycin-Produktion nachgewiesen werden. Einzig der zu Kontrollzwecken kultivierte Wildtyp-Stamm *S. viridochromogenes* Tü57 produzierte Avilamycin.

3.3.5 Strategie zur Synthese eines Codon-optimierten Gens

Das aus der Kartoffel (*Solanum tuberosum*) stammende Gen *sus1_soltu* konnte in seiner nativen Gensequenz nicht in *S. viridochromogenes* Tü57 exprimiert werden. Ein wahrscheinlicher Grund ist der mit 45 % geringe GC-Gehalt in dem Kartoffelgen. Um diese Problematik zu umgehen, wurde ein synthetisches Gen mit Streptomyceten-tauglichen Codonen hergestellt.

Wie in Abb. 3.19 dargestellt ist, wurde die für Sus1 codierende Sequenz zwecks Synthese dreigeteilt. Ein 1,2 kb großer Abschnitt des Gens von einer mittig im Gen gelegenen *Pstl*-Schnittstelle bis zum Stopp-Codon wurde als Auftragsarbeit durch die Firma 4base lab synthetisiert. Der vordere 1,2 kb große Abschnitt vom Start-Codon bis zu der *Pstl*-Schnittstelle wurde noch in zwei rund 0,6 kb-Abschnitte unterteilt und im Rahmen dieser Arbeit synthetisiert.

Abb. 3.19: Skizze der vier synthetisierten Teilstücke mit den relevanten Restriktionsschnittstellen (**A**). Der *aviD*-Promotor sowie die Teilstücke 3A und 3B wurden per PCR synthetisiert. Das Teilstück 2 wurde durch 4base lab synthetisiert. Zusammengesetzt entstand das Gen *susy_GC1* mit vorgeschaltetem *aviD*-Promotor und RBS (**B**).

3.3.5.1 PCR-basierte Gensynthese

Die angewandte Synthesemethode war PCR-basiert und zur Synthese waren zwei PCR-Schritte erforderlich. Im ersten Schritt wurden ausgehend von 90 Oligonukleotid-Primern in 14 unterschiedlichen PCR-Ansätzen etwa 120-140 bp große Fragmente synthetisiert. Die genaue Zusammensetzung des jeweiligen Primer-Mixes ist im Anhang (Abschnitt 6.5.3, Tab. 6.2) aufgelistet. Jeweils 7 der 14 PCR-Produkte wurden nach Aufreinigung in einem weiteren PCR-Schritt wieder als Primer zur Synthese der Fragmente 3A und 3B mit einer Größe von rund 0,6 kb eingesetzt (s. Schema in Abb. 3.20).

Zur Ableitung der Primersequenzen wurde die Software "DNAWorks" (http://molbio.info.nih.gov/dnaworks; Hoover und Lubkowski, 2002) eingesetzt. Dieses Programm berechnet ausgehend von der gewünschten Aminosäuresequenz, den Daten aus einer artspezifischen Codon-Präferenz-Tabelle (s. Abschnitt 6.5.2, Tab. 6.1 im Anhang) und der gewünschten Länge und Schmelztemperatur der Oligonukleotide die "optimalen Primer". Bestimmte Modifikationen auf DNA-Ebene, wie Restriktionsschnittstellen am Sequenzanfang und -ende oder der Ausschluß bestimmter Restriktionsschnittstellen innerhalb der Sequenz konnten festgelegt werden.

Die Aminosäuresequenz wurde zur Berechnung der Primer in zehn überlappende Abschnitte unterteilt. Dieses Vorgehen war notwendig, da das Programm bei Eingabe der rund 400 Aminosäuren umfassenden Teilsequenz keine brauchbaren Ergebnisse lieferte.

Abb. 3.20: Schematische Darstellung der PCR-basierten Gensynthese in zwei Schritten. In der linken Bildhälfte ist schematisch der 1. PCR-Schritt dargestellt, bei dem aus 8-10 Primern ein ca. 120 bp großes Amplifikat entsteht. Die Bereiche, in denen die Oligonukleotid-Primer überlappen, sind rot und blau gezeichnet. Nach einem Reinigungsschritt wurden die PCR-Produkte ausgehend von Mix 1 bis Mix 7 (bzw. Mix 8 bis Mix 14) als Primer für den 2. PCR-Schritt (s. rechte Bildhälfte) eingesetzt.

3.3.5.2 Erstellung des Plasmids pKC1218/susy_GC

Zuerst wurden per PCR der *aviD*-Promotor bzw. die *susy_GC*-Stücke 3A und 3B (s. Abb. 3.19) amplifiziert, wie es in den Abschnitten 2.10.12.2 und 2.10.12.1 beschrieben ist. Der *aviD*-Promotor und die beiden Teilstücke des Gens *susy_GC* mußten nach der Synthese zunächst in einen Zwischenvektor ligiert und sequenziert werden. Die Ligation der

0,3 kb großen PCR-amplifizierten *aviD*-Promotor-Region mit dem Vektor pGEM T-easy ergab das Plasmid pGEM/*aviD*-Pr (ohne Abb.). Die jeweils 0,6 kb großen PCR-Produkte *susy_GC3A* und *susy_GC3B* wurden zur Ligation mit dem Vektor pSK- eingesetzt, der nach Restriktion mit *Eco*RV über glatte Enden verfügte. Die entstandenen Plasmide wurden als pSK-/*susy3A* bzw. pSK-/*susy3B* (ohne Abb.) bezeichnet.

Nach Überprüfung der DNA-Sequenzen erfolgte durch geeignete Restriktionen und Ligationen die schrittweise Verknüpfung der vier DNA-Fragmente (s. Abb. 3.19) miteinander. Abschließend wurden Promotor und Gen in den Vektor pKC1218 überführt.

Der *aviD*-Promotor wurde aus dem Plasmid pGEM/*aviD*-Pr ausgeschnitten und mit dem Vektor pUCPU21 ligiert. In beiden Fällen erfolgten die Restriktionen mit *Nde*l und *Hin*dIII. Das resultierende Plasmid pUCPU21/*aviD*-Pr (ohne Abb.) wurde mit *Pst*l und *Xba*l geöffnet. Aus dem Plasmid pSK-/*susy2*, das in Auftragsarbeit synthetisiert wurde, wurde der Genanteil *susy_GC2* durch Restriktion mit *Pst*l und *Xba*l ausgeschnitten. Durch Ligation wurde das *susy_GC*-Teilstück in das Plasmid aufgenommen und ergab pUCPU21/*aviD*-Pr+*susy2* (ohne Abb.).

Für den nächsten Schritt wurden jeweils Restriktionen von pUCPU21/aviD-Pr+susy2 und pSK-/susy3A mit Ndel und Pstl durchgeführt. Auf diese Weise konnte susy_GC3A mit dem wachsenden Konstrukt verknüpft werden. Das resultierende Plasmid wurde pUCPU21/aviD-Pr+susy3A+2 (ohne Abb.) genannt. Das verbliebene Teilstück susy3B konnte nach Restriktion von pSK-/susy3B und pUCPU21/aviD-Pr+susy3A+2 mit Pstl und anschließender Ligation hinzugefügt werden. Bei dieser Ligation konnte das Insert in zwei Orientierungen mit dem Plasmid ligieren, so daß nach einer Restriktionsanalyse ein Plasmid ausgewählt wurde, bei dem das Insert in der gewünschten Orientierung vorliegt. Dieses Plasmid mit der Bezeichnung pUCPU21/susy_GC (ohne Abb.) wurde abschließend ebenso wie der Vektor pKC1218 mit *Hin*dIII und *Xba*I geschnitten. Das Genkonstrukt und der Vektor wurden mittels Ligation zum Expressionsplasmid pKC1218/susy_GC zusammengefügt (s. Abb. 6.12).

Iris Peintner übernommen. Die Arbeiten hierzu sind noch nicht abgeschlossen.

4 Diskussion

4.1 Polyketomycin-Biosynthesegencluster

Sequenzierung des Polyketomycin-Biosynthesegenclusters

Ausgehend von drei überlappenden Cosmiden aus *S. diastatochromogenes* Tü6028 wurde ein 52,1 kb großer Sequenzabschnitt mit Polyketomycin-Biosynthesegenen sequenziert. Nach Datenbankabgleich konnte den putativen Proteinen aufgrund von Sequenzähnlichkeiten eine mögliche Funktion zugeordnet werden.

Zu den putativen Enzymen gehören u.a. eine PKS vom Typ II, eine 6-Methylsalicylsäuresynthase, Glykosyltransferasen, aber auch Enzyme, die an der Desoxyzuckerbiosynthese beteiligt sind. Die aufgefundenen Strukturgene sprechen dafür, daß der Sequenzabschnitt dem Polyketomycin-Cluster zugeordnet werden kann.

Die Inaktivierung von *pokGT1* führte zu einer Unterbrechung der Polyketomycin-Synthese bei gleichzeitiger Anreicherung von Polyketidvorläufern des Polyketomycinons. Auf diese Weise konnte die Zugehörigkeit der untersuchten Cosmidsequenzen zum Polyketomycin-Cluster belegt werden.

Ausgehend von den in dieser Arbeit annotierten Proteinen und deren möglichen Funktionen, wurde ein hypothetischer Polyketomycin-Biosyntheseweg aufgestellt (s. Abschnitt 4.1.4.3). Dabei wurden die Daten aus vorausgegangenen Arbeiten zur Strukturaufklärung des Polyketomycins berücksichtigt (Momose *et al.*, 1998b; Paululat *et al.*, 1999).

Nachfolgend werden einige im Polyketomycin-Cluster vorgefundenen Gene bzw. Genprodukte näher betrachtet, um Besonderheiten aufzuzeigen.

Mit der Erschließung der Polyketomycin-Cluster-Sequenz und den künftig zu erwartenden Kenntnissen bezüglich einzelner Proteinfunktionen, bietet sich die Möglichkeit dieses Wissen z.B. bei der Synthese von Hybridantibiotika mittels kombinatorischer Biosynthese zu nutzen.

4.1.1 Polyketidsynthasen

4.1.1.1 PokM1 – iterative Typ-I-PKS

Auf dem Cosmid CB30-6D20 liegt benachbart zu *pokM2* und *pokM3* das 5220 bp umfassende Gen *pokM1*. Die Aminosäuresequenz (1739 AS) weist Homologie zu der Polyketidsynthase NcsB aus *S. carzinostaticus* subsp. *neocarzinostaticus* ATCC 15944 auf (Sthapit *et al.*, 2004; Liu *et al.*, 2005). Ein weiteres homologes Protein ist die aus dem Pilz *Penicillium patulum* (Bainier; synonym: *P. griseofulvum* Dierckx) stammende 6-Methylsalicylsäure-Synthase (MSAS), welche eingehend charakterisiert wurde (Dimroth *et al.*, 1970; Beck *et al.*, 1990; Spencer und Jordan, 1992; Child *et al.*, 1996). Das Enzym katalysiert die Synthese von 6-Methylsalicylsäure. Das Protein setzt sich aus mehreren funktionellen Domänen zusammen. Diese fungieren als Ketosynthase (KS), Acyltransferase (AT), Dehydratase (DH), Ketoreduktase (KR) und Acyl-Carrier-Protein (ACP).

Bei Berücksichtigung der einzelnen Domänen aus PokM1 konnten hinsichtlich der identischen Aminosäuren höhere Übereinstimmungen festgestellt werden. Diese Daten sind in Tab. 4.1 zusammengefaßt.

Tab. 4.1: Vergleich der PokM1-Domänen mit anderen PKS-Domänen. AviM und CalO5: Orsellinsäure-Synthasen aus S. viridochromogenes Tü57 (T30871) bzw. Micromonospora echinospora (AAM70355); P.g.-MSAS (Penicillium griseofulvum; AAB49684); P.p.-MSAS (Penicillium patulum; P22367); A.p.-MSAS (Aspergillus parasiticus; (Aspergillus A.t.-MSAS BAA20102). KS = Ketosynthase, AAC23536): terreus: AT = Acyltransferase. KR = Ketoreduktase, ACP = Acyl-Carrier-Protein; DH = Dehydratase, Ident. = identische Aminosäuren: Posit. = ähnliche Aminosäuren.

	AviM		AviM CalO5 P.gMSAS F		P.pMSAS		A.pMSAS		A.tMSAS			
	Ident.	Posit.	Ident.	Posit.	Ident.	Posit.	Ident.	Posit.	Ident.	Posit.	Ident.	Posit.
KS	62%	74%	64%	78%	54%	69%	58%	70%	56%	72%	56%	70%
AT	62%	70%	61%	72%	44%	60%	51%	63%	39%	57%	48%	62%
DH	38%	50%	43%	53%	34%	50%	40%	55%	41%	53%	37%	57%
KR					55%	68%	52%	64%	52%	69%	56%	71%
ACP	44%	60%	53%	70%	38%	55%	44%	66%	37%	55%	46%	67%

Das besondere an diesen Polyketidsynthasen ist, daß sie zwar aufgrund des Domänenaufbaus dem PKS-Typ I zugehören, aber hinsichtlich der katalytischen Aktivität iterativ arbeiten.

Neben dem bereits genannten NcsB gehören auch AviM aus *S. viridochromogenes* Tü57 (Gaisser *et al.*, 1997a; Weitnauer *et al.*, 2001b) sowie CalO5 aus *Micromonospora echinospora* ssp. *calichensis.* (Ahlert *et al.*, 2002) zu den bakteriellen iterativen PKS vom Typ I (Shen, 2003). Die zuvor genannten Enzyme sind an der Synthese aromatischer Polyketide beteiligt. Weitere iterative Typ-I-PKS sind NcsE aus *S. carzinostaticus* subsp. *neocarzinostaticus* ATCC 15944 (Liu *et al.*, 2005), SgcE aus *S. globisporus* (Liu *et al.*, 2002) und CalE8 aus *M. echinospora* ssp. *calichensis* (Ahlert *et al.*, 2002), die an der Synthese von Endiin-Grundgerüsten beteiligt sind.

In Abb. 4.1 gibt die Skizze die Größe und relative Lage der katalytischen Domänen von PokM1 und vier weiteren iterativen Typ-I-PKS wieder. Dieser Vergleich macht deutlich, daß PokM1, die 6-MSAS aus *P. patulum* sowie NcsB aus *S. carzinostaticus* subsp. *neocarzinostaticus* ATCC 15944 die gleichen Domänen (KS, AT, DH, KR und ACP) in gleicher Anordnung aufweisen.

Abb. 4.1: Organisation der funktionalen Proteindomänen verschiedener iterativer Polyketidsynthasen vom Typ I. CalO5 und AviM sind Orsellinsäure-Synthasen aus *Micromonospora echinospora* ssp. *calichensis* (AAM70355) bzw. S. viridochromogenes Tü57 (T30871); 6-MSAS und PokM1 aus *Penicillium patulum* (P22367) bzw. S. diastatochromogenes Tü6028 sind 6-Methylsalicylsäuresynthasen und NcsB aus S. carzinostaticus subsp. *neocarzinostaticus* ATCC 15944 (AAM77986) ist eine Naphthoesäure-Synthase. KS = Ketosynthase, AT = Acyltransferase, DH = Dehydratase, KR = Ketoreduktase, ACP = Acyl-Carrier-Protein; die "Accession"-Nr. ist jeweils in Klammern angegeben.

4.1.1.2 PokP1-3 – die "minimale" Typ-II-PKS

Die drei Proteine PokP1, PokP2 und PokP3 bilden wahrscheinlich zusammen den Multienzymkomplex einer Typ-II-Polyketidsynthase. Auf diese Funktion deutet jeweils die Sequenzähnlichkeit der drei Proteine zu einer Ketosynthase α (KS α), einer Ketosynthase β (KS β) und einem Acyl-Carrier-Protein (ACP) hin.

Die mögliche Syntheseleistung der "minimalen PKS" soll an dieser Stelle nicht vertieft werden, da nicht zu erwarten ist, daß die katalysierte Reaktion von dem typischen Ablauf, wie bereits in der Einleitung (Abschnitt 1.3) beschrieben wurde, abweicht. Zudem wird die Polyketomycinon-Biosynthese unter Berücksichtigung der PKS-Enzyme PokP1-3 in Abschnitt 4.1.4.3 behandelt.

4.1.1.3 PKS-Aktivierung trotz fehlender Phosphopantetheinyltransferase?

Im Zusammenhang mit den Polyketidsynthase-Genen fällt auf, daß im bisher bekannten Sequenzabschnitt kein Gen mit Homologie zu einer Phosphopantetheinyltransferase (PPTase) identifiziert werden konnte. Die PPTasen sind bei allen Polyketidsynthasen, Fettsäuresynthasen und nichtribosomalen Peptidsynthetasen notwendig, um das Apoenzym in die aktive Holo-Form zu überführen. Dies geschieht durch Übertragung eines 4'-Phosphopantetheinylrestes von Coenzym A auf den Hydroxylrest eines konservierten Serins der Acyl-Carrier-Protein-Domäne (Lambalot und Walsh, 1995; Lambalot *et al.*, 1996; Walsh *et al.*, 1997).

Untersuchungen von Kealey und Kollegen (1998) deuten an, daß auch die 6-Methylsalicylsäuresynthase (6-MSAS) posttranslational in die aktive Holo-Form überführt werden muß. Bei heterologer Expression eines 6-MSAS-Gens aus dem Pilz *Penicillium patulum* in *E. coli* oder Hefezellen konnte die Produktion der 6-Methylsalicylsäure deutlich erhöht werden, wenn zusätzlich das aus *Bacillus subtilis* stammende *sfp*-Gen, das für eine Phosphopantetheinyltransferase kodiert, exprimiert wurde.

In anderen Fällen kann es durch Phosphopantetheinyltransferasen des Expressionswirtes, die geringe Substratspezifität aufweisen, zur Aktivierung des Apoenzyms kommen, wie Yalpani *et al.* (2001) im Fall einer heterolog in Tabak exprimierten 6-MSAS vermuten. Neben PPTasen mit hoher Spezifität gibt es PPTasen, wie die bereits erwähnte Sfp aus *B. subtilis*, mit hoher Substratflexibilität. Sfp kann neben dem natürlichen Substrat auch andere Peptidyl-Carrier-Proteine und darüber hinaus auch die ACP-Domänen oder -Untereinheiten von Fettsäure- oder Polyketidsynthasen in effizienter Weise aktivieren (Lambalot *et al.*, 1996; Kealey *et al.*, 1998; Reuter *et al.*, 1999). Da im Polyketomycin-Cluster noch kein PPTase-Gen identifiziert werden konnte, besteht die Möglichkeit, daß die bisher bekannte Sequenz nicht das vollständige Polyketomycin-Cluster umfaßt oder aber, daß *S. diastatochromogenes* Tü6028 zur Aktivierung der Acyl-Carrier-Proteine ebenfalls PPTasen aus anderen Stoffwechselwegen mit entsprechender Substratflexibilität nutzt.

4.1.2 PokABC1 und PokABC2 – Ein Efflux-System zur Autoresistenz

Die abgeleiteten Aminosäuresequenzen von *pokABC1* und *pokABC2* weisen jeweils hohe Identität (50 % bzw. 40 %) zu Proteinen auf, die entweder als ATP-bindende oder als Transmembran-Domäne eines ABC-Transporters gelten.

Die ABC-Transporter sind prinzipiell aus vier Domänen aufgebaut. Es gibt je zwei hydrophobe Domänen, die jeweils sechs Transmembranbereiche enthalten und zwei ATPbindende Domänen, die dem Cytoplasma zugewandt sind und ATP hydrolysieren. Diesen sogenannten ATP-Bindungskassetten (engl. "ATP binding cassette") ist der Name ABC-Transporter entlehnt. Falls es sich um ein Aufnahmesystem handelt, sind zusätzlich noch Substratbindeproteine vorhanden, die bei den Effluxsystemen nicht vorkommen.

Die ATP-bindende und die hydrophobe Domäne der ABC-Transporter liegen meist fusioniert auf einem Protein vor. Die funktionelle Einheit besteht in diesem Fall aus einem Proteindimer (s. Abb. 4.2 B). Von dieser "Grundform" gibt es verschiedene Abwandlungen. So gibt es beispielsweise ABC-Transporter, die sich aus vier Proteinen zusammensetzen, da die Domänen von zwei individuellen benachbarten Genen kodiert werden (A). Bei Eukaryoten liegen oft alle vier Domänen fusioniert auf einem einzigen großen Protein vor (C). Der funktionale ABC-Transporter ist in diesem Fall ein Monomer mit zwei Transmembran- und zwei ATP-bindenden Domänen.

Im Fall von *pokABC1* und *pokABC2* sind die Gene unmittelbar benachbart und werden wahrscheinlich gemeinsam transkribiert. Die daraus hervorgehenden Proteine bilden vermutlich einen ABC-Transporter mit tetramerer Struktur.

Abb. 4.2: Beispiele für Gene und Domänenarchitektur von ABC-Transportern. Der Transporter hat einen tetrameren Aufbau, wenn jede Domäne auf einem Protein vorliegt (A); Nukleotid-bindende und Transmembran-Domäne werden von einem Gen kodiert und der aktive Transporter besteht aus einem Dimer (B); der ABC-Transporter besteht aus einem einzigen Protein, das alle vier Domänen umfaßt (C). NBD = Nukleotid-bindende Domäne; TMD = Transmembran-Domäne; M = Membran.

ABC-Transporter sind in fast allen Organismen von Bakterien bis hin zu Säugetieren verbreitet und am Transport recht unterschiedlicher Moleküle beteiligt, wie beispielsweise Zucker, Aminosäuren, Vitamine oder Sekundärstoffe. Die ABC-Transporter nehmen eine wichtige Rolle ein, da sie unter anderem an Transportvorgängen zur Nährstoffaufnahme oder Exkretion von toxischen Substanzen beteiligt sind. Besondere Beachtung finden derzeit ABC-Transporter, die zur Ausbildung von Multiresistenzen führen können (Chang, 2003).

Zur Untersuchung der Resistenz-vermittelnden Eigenschaften durch ABC-Transporter wurden unter anderem die Gene *drrA* und *drrB* aus dem Daunorubicin-/Doxorubicin-Produzenten *S. peucetius*, die jeweils für eine ABC-Transporter-Domäne kodieren, in *S. lividans* exprimiert (Guilfoile und Hutchinson, 1991). Dabei zeigte sich, daß die Koexpression von DrrA und DrrB dem Expressionswirt eine erhöhte Resistenz gegenüber beiden Antibiotika (Daunorubicin und Doxorubicin) verlieh. Unter den Antibiotika-transportierenden Proteinen finden sich weitere näher charakterisierte Vertreter aus den Antibiotika-Clustern anderer Streptomyceten (Fernández-Moreno *et al.*, 1998; Méndez und Salas, 2001; Kaur *et al.*, 2005; Stumpp *et al.*, 2005).

Es ist relativ wahrscheinlich, daß der ABC-Transporter aus den Untereinheiten PokABC1 und PokABC2 an der Ausschleusung des Polyketomycins aus dem Cytoplasma beteiligt ist. Für diesen Transportprozeß wird die durch ATP-Hydrolyse freigesetzte Energie genutzt, um das Antibiotikum durch Membranporen, die aus den Transmembrandomänen gebildet werden, aus der Zelle zu sekretieren. So wird verhindert, daß die Substanz in der Zelle schädliche Konzentrationen erreicht oder sich die antibiotische Aktivität gegen den Produzenten richtet. Daß ein solcher Transportmechanismus bedeutend für den Ablauf der Antibiotika-Biosynthese sein kann, zeigt folgendes Beispiel. Sletta und Kollegen stellten fest, daß die putativen ABC-Transporter-Proteine NysH und NysG (jeweils mit TMD und NBD) essentiell für eine effiziente Nystatin-Biosynthese sind (2005). Sind die entsprechenden Gene deletiert, kann der Produzent *S. noursei* ATCC 11455 Nystatin nur noch in geringerer Rate (65 %) synthetisieren, wobei es zur Anreicherung des Vorläufers 10-Desoxynystatin kommt. Im Fall der Proteine DrrA und DrrB aus *Streptomyces peucetius*, die dem Produzenten

Resistenz gegen Daunorubicin und Doxorubicin verleihen, zeigten Transkriptionsstudien, daß die entsprechenden Gene *drrA* und *drrB* nur während der Antibiotikaproduktionsphase exprimiert werden (Guilfoile und Hutchinson, 1991).

4.1.3 PokAC1-3 – Acetyl-CoA-Carboxylase

Die drei Gene *pokAC1*, *pokAC2* und *pokAC3* codieren für eine Acetyl-CoA-Carboxylase (Carboxyltransferase), ein Biotin-Carboxylase-Carrier-Protein und eine Biotin-Carboxylase (α -Untereinheit der Acetyl-CoA-Carboxylase).

Dieser Enzymkomplex ist eigentlich dem Primärstoffwechsel (Fettsäurebiosynthese) zuzuordnen. Die katalytische Reaktion ist folgende:

Acetyl-CoA + CO₂ ATP Malonyl-CoA

Das Vorkommen der drei Gene inmitten der Polyketomycin-Biosynthesegene ist ungewöhnlich. Bisher wurde innerhalb von Streptomyceten-Antibiotika-Genclustern nur im Fall des Jadomycin-Clusters aus *Streptomyces venezuelae* ISP5230 von dem Vorhandensein eines Gens berichtet, welches die zwei katalytische Domänen Acetyl-CoA-Carboxylase und Biotin-Carboxylase umfaßt (Han *et al.*, 2000). Han und Kollegen führten Experimente durch, die belegen, daß die Inaktivierung des Acetyl-CoA-Carboxylase-Gens *jadJ* bei normaler Morphologie und normalem Wachstum der Streptomyceten zu einer reduzierten Jadomycin-Produktion führt (s. Abschnitt 3.1.5.3). Das entsprechende Protein nimmt also Einfluß auf die Antibiotika-Biosynthese, während eine Beeinträchtigung der Fettsäurebiosynthese unwahrscheinlich ist. Das durch die Acetyl-CoA-Carboxylase generierte Malonyl-CoA dient möglicherweise als Substrat für die Jadomycin-Synthese.

Übertragen auf *S. diastatochromogenes* Tü6028 könnte dies bedeuten, daß durch Expression der drei im Polyketomycin-Cluster gelegenen "Acetyl-CoA-Carboxylase"-Gene *pokAC1-3* ebenfalls zusätzliches Malonyl-CoA für die Polyketomycin-Biosynthese bereitgestellt wird.

4.1.4 Vorschlag zur Biosynthese des Polyketomycins

4.1.4.1 Mögliche Biosynthese der 3,6-Dimethylsalicylsäure

Aufgrund der bekannten Daten zu PokM1, PokM2 und PokM3 und Vergleichen mit anderen iterativen Typ-I-Polyketidsynthasen läßt sich für die Synthese der 6-Methylsalicylsäure als Vorläufer der 3,6-Dimethylsalicylsäure ein hypothetischer Biosyntheseweg aufstellen (s. Abb. 4.3; Dimroth *et al.*, 1970; Shoolingin-Jordan und Campuzano, 1999).

Neben der eigentlichen Polyketidsynthase PokM1 ist möglicherweise auch PokM2 an der Synthese beteiligt. Für die zu PokM2 homologen Proteine AviN bzw. DpsC gibt es Hinweise, daß sie essentiell für die Erkennung der Starter-Einheit sind (Rajgarhia und Strohl, 1997; Bao *et al.*, 1999). Ebenso könnte PokM2 für die Erkennung von Acetyl-CoA als Starter-Einheit relevant sein, so daß eine initiale Acetyl-KS-Einheit entsteht. Gaisser und Kollegen (1997a) konnten durch alleinige Expression der zu PokM1 homologen Orsellinsäure-Synthase AviM aus *S. viridochromogenes* Tü57 in den Wirten *S. lividans* TK24 und *S. coelicolor* CH999 die Orsellinsäure-Synthese nachweisen. Bei diesem Versuch wurde das zu *pokM2* homologe Gen *aviN* nicht koexprimiert. Demnach ist die Enzymaktivität von AviN zur Synthese nicht unbedingt erforderlich, aber durch die Diskriminierung "falscher" Acyl-CoA-Moleküle läuft die Synthese wahrscheinlich effizienter ab. Möglicherweise gilt dies in analoger Weise für das AviN-homologe Protein PokM2.

Abb. 4.3: Vorschlag zum Syntheseweg der 6-Methylsalicylsäure in S. diastatochromogenes Tü6028. Die eingebauten Acetateinheiten sind farbig hervorgehoben und die drei Kondensationsschritte wurden mit 1-3 gekennzeichnet. KS = Ketosynthase, AT = Acyltransferase, DH = Dehydratase, KR = Ketoreduktase, ACP = Acyl-Carrier-Protein; in Anlehnung an Dimroth *et al.* (1970) und Shoolingin-Jordan und Campuzano (1999).

Aufgrund der in PokM1 vorliegenden katalytischen Domänen und unter Berücksichtigung der Ähnlichkeit zu der 6-MSAS aus *P. patulum* (Shoolingin-Jordan und Campuzano, 1999) folgt nun eine Beschreibung der wesentlichen Reaktionsschritte für die PokM1-katalysierte Synthese (s. Abb. 4.3):

PokM1 katalysiert ausgehend von der Starter-Einheit Acetyl-CoA drei Kondensationsschritte, wobei Acetateinheiten, die aus Malonyl-CoA stammen, zur Kettenverlängerung genutzt werden. Die katalytischen Domänen KS, AT und ACP sind bei jedem Reaktionszyklus wiederholt aktiv. Während sich an die erste Kondensation die zweite Kondensation direkt anschließt, wird nach der zweiten Kondensation die Ketogruppe durch Reduktion (KR-Domäne) und Dehydratisierung (DH-Domäne) unter Bildung einer Doppelbindung entfernt. Nach dem dritten Kondensationsschritt entsteht durch Cyclisierung, Dehydratisierung und Enolisierung die aromatische 6-Methylsalicylsäure. Da im Enzym keine Thioesterase-Domäne vorliegt, erfolgt die Abspaltung der 6-MSAS wahrscheinlich nicht hydrolytisch, sondern es könnte ein Keten-Intermediat entstehen, das unter Bildung einer Carboxylgruppe dehydratisiert wird. Ob die Methylierung am C3-Atom vor oder nach der Verknüpfung mit dem Zuckerrest stattfindet, läßt sich ohne nähere Untersuchungen nicht feststellen.

Die 6-Methyl- oder 3,6-Dimethylsalicylsäure wird wahrscheinlich durch PokM3 adenyliert. Auch für die Verknüpfung des (Di-)Methylsalicyloylrestes mit dem Disaccharidrest aus Amicetose und Axenose kommt PokM3 in Frage. Diese Enzymaktivität weist z.B. das verwandte Protein YbtE aus *Yersinia pestis*, das an der Synthese von Yersiniabactin beteiligt ist, auf. In diesem Fall wird Salicylsäure durch Adenylierung mittels YbtE aktiviert und mit einer Aryl-Carrier-Protein-Domäne der nichtribosomalen Peptidsynthetase HMWP2 verknüpft (Gehring *et al.*, 1998a und 1998b).

Innerhalb der bekannten Sequenzdaten aus dem Polyketomycin-Produzenten konnte mit *pokL* ein weiteres Gen identifiziert werden, dessen Genprodukt für die beschriebene Transferaktivität in Frage kommt. Es handelt sich dabei um ein Protein mit Ähnlichkeit zu Acyl-CoA-Ligasen/Acyl-CoA-Synthetasen. Innerhalb der PokL-Sequenz sind konservierte Motive enthalten, die in adenylierenden Enzymen wie z.B. in Peptidsynthetasen (A8 und A10; Marahiel *et al.*, 1997) oder in 4-Coumarat:CoA-Ligasen (Box I und Box II; Stuible *et al.*, 2000) vorkommen. Das Box-I-Motiv tritt in ähnlicher Form unter anderem auch in Acyl-CoA-Ligasen, Acetyl-CoA-Ligasen und Peptidsynthetasen auf. Ogasawara und Kollegen diskutieren daher im Fall des zu PokL ähnlichen Proteins VinN aus *S. halstedii* zwei mögliche Enzymfunktionen: Entweder agiert VinN als CoA-Ligase und aktiviert auf diese Weise 3-Methylaspartat zu 3-Methylaspartat-CoA oder VinN verknüpft 3-Methylaspartat mit AMP (Ogasawara *et al.*, 2004).

Möglicherweise treffen die oben genannten Hypothesen nicht zu und die Funktion von PokL besteht darin, zusätzliches Acetyl-CoA für die Polyketomycin-Synthese bereit zu stellen, wie es Prado *et al.* (1999) für MtmL aus *S. argillaceus* vermuten, das zu 48 % mit der Proteinsequenz von PokL übereinstimmt.

4.1.4.2 Hypothetischer Desoxyzuckerbiosyntheseweg

Im sequenzierten DNA-Abschnitt des Polyketomycin-Produzenten konnten 9 Gene detektiert werden, die der Zuckerbiosynthese zugeordnet werden können. Des weiteren liegen zwei Glykosyltransferasegene vor. Ausgehend von den vorhandenen Enzymen, läßt sich für die im Polyketomycin vorkommenden Zuckerbausteine dNDP-D-Amicetose und dNDP-L-Axenose ein hypothetischer Biosyntheseweg (s. Abb. 4.4) aufzeichnen.

Abb. 4.4: Hypothetischer Biosyntheseweg der dNDP-D-Amicetose und dNDP-L-Axenose aus *S. diastatochromogenes*. **PokS1** = dNDP-Glucose-Synthase; **PokS2** = 4,6-Dehydratase; **PokS3** = 2,3-Dehydratase; **PokS4** = 3-Ketoreduktase; **PokS5** = 3-Dehydratase; **PokS6** = 4-Ketoreduktase; **PokS7** = 5-Epimerase; **PokS8** = C3-Methyltransferase; **PokS9** = 4-Ketoreduktase.

Wie für die Synthese anderer aktivierter Desoxyhexosen bereits postuliert wurde (Liu und Thorson, 1994; Trefzer *et al.*, 1999), ist anzunehmen, daß auch die beiden Zucker dNDP-D-Amicetose und dNDP-L-Axenose aus dem gemeinsamen Vorläufer dTDP-D-4-Keto-2,6-didesoxyglucose hervorgehen.

Ausgehend von Glucose-1-phosphat katalysieren die Enzyme PokS1 und PokS2 nacheinander die Synthese der dNDP-D-Glucose und dTDP-D-4-Keto-6-desoxyglucose. Der Biosyntheseweg verzweigt sich in diesem Fall noch nicht, sondern es wird durch die Enzymleistung der Proteine PokS3 und PokS4 die dNDP-D-4-Keto-2,6-didesoxyglucose gebildet. Erst an dieser Stelle trennen sich die Biosynthesewege der beiden Zucker.

Die Synthese der dNDP-D-Amicetose wird durch die Aktivität der 3-Dehydratase PokS5 und der 4-Ketoreduktase PokS6 vervollständigt. Die 5-Epimerase PokS7, die C3-Methyltransferase PokS8 und die 4-Ketoreduktase PokS9 katalysieren die Bildung der dNDP-L-Axenose. Die Zuordnung der beiden 4-Ketoreduktasen PokS6 und PokS8 zu dem jeweiligen Zuckerbiosyntheseweg stützt sich derzeit nur auf die benachbarte Lage der entsprechenden Gene zu *pokS5* bzw. *pokS7* im Polyketomycin-Cluster (s. Abb. 3.2). Da die Ketoreduktionsschritten durch PokS6 und PokS9 stereospezifisch ablaufen, werden jeweils die gebildeten Hydroxylgruppen am C4 des Zuckers in die äguatoriale Ebene überführt.

Der Ablauf der Syntheseschritte in der genannten Reihenfolge wird gestützt durch die Zahl und die möglichen Proteinfunktionen der im Cluster lokalisierten Zuckerbiosynthesegene. Es läßt sich ohne experimentelle Nachweise jedoch nur spekulieren, ob die vorgeschlagene Reihenfolge zutrifft. Bezüglich der Abfolge der Epimerisierung und Methylgruppenübertragung durch PokS7 und PokS8 ist eine umgekehrte Reihenfolge ebenso denkbar. Die Ketoreduktion als jeweils letzten Schritt des Syntheseweges der beiden Desoxyzucker zu betrachten, stimmt mit bereits beschriebenen Zuckerbiosynthesewegen für die Synthese von dTDP-L-Mycarose in *Saccharopolyspora erythraea* (Summers *et al.*, 1997, Salah-Bey *et al.*, 1998) oder dTDP-L-Epivancosamin in *Amycolatopsis orientalis* (Chen *et al.*, 2000) überein. Zudem ist die Reaktivität des Zuckermoleküls nach der Ketoreduktion herabgesetzt, so daß es wahrscheinlich ist, daß dieser Schritt erst nach Abschluß der übrigen Reaktionen am Ende des Syntheseweges steht.

Bezüglich der Stereochemie in Position C1 der aktivierten Zucker ist zu ergänzen, daß diese sich bei der Übertragung der Zuckermoleküle durch die Glykosyltransferasen PokGT1 und PokGT2 ändert, da der Glykosyltransfer sehr wahrscheinlich nach dem invertierenden Mechanismus (s. Abb. 4.5) abläuft.

Abb. 4.5: Schema zur Übertragung eines Desoxyzuckers auf eine Hydroxylgruppe unter Ausbildung einer O-glykosidischen Bindung nach dem invertierenden Mechanismus (in Anlehnung an Davies, 2001). GT = Glykosyltransferase; R-OH = Hydroxylgruppe des Aglykons.

Bei der Zuckerübertragung durch Glykosyltransferasen werden zwei Reaktionsmechanismen unterschieden, die entweder unter Erhalt oder Umkehrung der Zuckerkonfiguration ablaufen. Bei dem invertierenden Mechanismus erfolgt der Zuckertransfer durch bimolekulare nukleophile Substitution (S_N2). Dabei wird das Akzeptormolekül durch eine Base im katalytischen Zentrum des Enzyms deprotoniert und das entstandene Anion reagiert als Nukleophil mit dem C1-Atom des Zuckers. Die Konfiguration des Zuckers wird bei diesem Mechanismus umgekehrt (Sinnot, 1990; Quirós *et al.*, 2000, Ünligil und Rini, 2000).

Bei den Glykosyltransferasen, die die Ausbildung glykosidischer Bindungen unter Beibehaltung der Konfiguration katalysieren, finden vermutlich zwei S_N 2-Reaktionen unter Bildung einer Glykosyl-Enzym-Zwischenstufe nacheinander statt (Ly und Withers, 1999; Zechel und Withers, 2000). Ein solches kovalentes Glykosyl-Enzym-Intermediat konnte bisher nicht nachgewiesen werden.

Erste Untersuchungen an der pokGT1-Mutante, bei der die Zuckerübertragung beeinträchtigt ist, deuten an, daß die Desoxyzucker D-Amicetose und L-Axenose im Polyketomycin notwendig für die biologische Aktivität sind. Die Derivate im Extrakt aus der pokGT1-Mutante waren inaktiv gegenüber B. subtilis (s. Abschnitt 3.1.6.4). Dieses Resultat deutet an, daß der tetracyclische Polyketomycin-Vorläufer (putative Struktur in Abb. 3.5), der wahrscheinlich von der pokGT1-Mutante synthetisiert wird, nicht über die Bioaktivität des Polyketomycins verfügt. Dies läßt vage Vermutungen hinsichtlich des Reaktionsmechanismus zu: Zum einen können auch im Fall des Polyketomycins die Zuckerreste bedeutend für die antibiotische Aktivität sein, wie dies bereits von anderen glykosidierten Antibiotika bekannt ist (Flynn et al., 1954; Weymouth-Wilson, 1997). Die Testresultate zum Wirkmechanismus der Cervimycine (s. Abschnitt 1.4) lassen darauf schließen, daß die antibiotische Wirkung weder auf DNA-Interkalierung noch auf Ribosomen-Interaktion beruht. Dies könnte ebenso für Polyketomycin zutreffen, bedarf aber noch eingehender Untersuchung. Aufgrund der Strukturverwandtschaft zwischen Polyketomycin und DMI-2, dessen hemmende Wirkung auf DNA-Methyltransferasen bereits geschildert wurde (s. Abschnitt 1.4), ist eine ähnliche Wirkweise für das Polyketomycin denkbar, zumal dies in Einklang mit der cytotoxischen Aktivität steht.

4.1.4.3 Zusammenfassung der Polyketomycin-Biosynthese

Zusammenfassend soll hier der hypothetische Ablauf der Polyketomycin-Biosynthese, wie auch in Abb. 4.6 dargestellt, geschildert werden.

Das für die Polyketomycinon-Synthese nötige Dekaketid wird vermutlich in einer PKSkatalysierten Reaktion vom Typ II ausgehend von einem Acetyl-CoA-Molekül und neun Malonyl-CoA-Molekülen synthetisiert. Diese Syntheseleistung wird mutmaßlich durch PokP1, PokP2 und PokP3 katalysiert, die die "minimale PKS" bilden.

Die durch Aktivität der PKS-Einheit gebildete Polyketonkette wird in spezifischer Weise gefaltet und durch modifizierende Reaktionen, die auch als "post PKS modifications" bezeichnet werden, erfolgt die Ausbildung des Polyketomycinons. Die Aktivität der Cyclasen/Aromatasen (PokC1, PokC2, PokC3) trägt vermutlich zur Bildung des viergliedrigen Ringsystems bei. Außerdem erhält das Polyketomycinon seine Struktur durch Reduktionen, Methylgruppen-Übertragungen und Oxygenierungen.

Abb. 4.6: Schema zum möglichen Ablauf der Polyketomycin-Biosynthese in S. diastatochromogenes Tü6028.

Auf die Hydroxylgruppe am C8-Atom und auf das C6-Atom wird jeweils eine Methylgruppe übertragen. Als Methylgruppendonor kommt aufgrund der vorgefundenen charakteristischen Motive in der Aminosäuresequenz der beiden möglichen beteiligten Enzyme PokMT2 bzw. PokMT3 S-Adenosylmethionin in Frage. Weiterhin konnten im Cluster fünf Oxygenase-/ Hydroxylase-Gene identifiziert werden. Die Enzyme (PokO1-4) führen wahrscheinlich an den C-Atomen 4, 4b, 7 und 12b (s. Abb. 1.1) jeweils ein Sauerstoffatom (meist als Hydroxylgruppe) ein. Es ist unklar, ob auch die putative Hydroxylase PokU2 involviert ist. Die Desoxyzucker D-Amicetose und L-Axenose werden in sechs bzw. sieben Reaktionsschritten ausgehend von D-Glucose-1-phosphat synthetisiert. Die Glykosyltransferasen PokGT1 und PokGT2 verbinden die Zucker unter Ausbildung einer O-glykosidischen Bindung mit dem entsprechenden Akzeptormolekül. Dabei ist es aufgrund der identifizierten Biosynthesegene sehr wahrscheinlich, daß zunächst die Desoxyzucker nacheinander beginnend mit der D-Amicetose übertragen werden und die Verknüpfung mit dem (Di-)Methylsalicylsäurerest erst im Anschluß stattfindet.

Die 6-Methylsalicylsäure geht aus der Synthese durch eine iterative PKS vom Typ I aus vier Acetateinheiten hervor. Das Molekül wird durch Methylierung zur 3,6-Dimethylsalicylsäure vervollständigt. Diese Einheit wird an die Disaccharidkette angehängt.

Zur endgültigen Klärung der genauen Abfolge der Biosyntheseschritte und Enzymfunktionen bedarf es weiterer Untersuchungen an Deletionsmutanten sowie Expressionsstudien mit einzelnen Proteinen.

4.2 Expression von Sus1 aus Solanum tuberosum

Die von Sus1, das aus der Kartoffel (*Solanum tuberosum*) stammt, katalysierte Reaktion ist die Spaltung von Saccharose in dNDP-Glucose und Fructose wie in Abb. 3.15 zu sehen ist. Das entsprechende Gen *sus1_soltu* sollte in *S. viridochromogenes* Tü57 exprimiert werden, um ausgehend von Saccharose dNDP-Glucose als Substrat für die Desoxyzuckerbiosynthese bereitzustellen. Für die Expression wurde eine *aviD*-Mutante erstellt, bei der die dNDP-Glucose-Synthase inaktiviert wurde. Die Expression von Sus1 sollte zur Komplementierung der Mutante führen, was leicht zu prüfen wäre.

Das Gen *sus1_soltu* ließ sich jedoch in seiner nativen Gensequenz (cDNA) nicht im Streptomyceten-Wirt exprimieren. Dies beruht wahrscheinlich auf dem geringen GC-Gehalt im Kartoffelgen von 45 % im Vergleich zu dem durchschnittlichen GC-Gehalt von 72 % in *Streptomyces*-Genen. Prinzipiell ist es nicht ungewöhnlich, daß sich ein Gen aus einem eukaryotischen Organismus mit einem geringen GC-Gehalt (*sus1_Soltu*: 45,2 %) nicht in einem Bakterium mit einem hohen genomischen GC-Gehalt exprimieren läßt.

Bei der Proteinbiosynthese wird für jedes Codon der mRNA die tRNA mit dem entsprechenden Anticodon benötigt. Der Streptomycet verfügt vor allem über jene tRNA, die er entsprechend seiner spezifischen Codon-Präferenz benötigt. Besonders für einige Codone, die an dritter Position ein Adenin oder Thymin aufweisen, kann es daher bei der Proteinbiosynthese aufgrund mangelnder tRNA zum Abbruch kommen.

Weiterhin kann es nach der Synthese des Polypeptids zu Problemen bei der Proteinfaltung kommen, so daß es aufgrund der Fehlkonformation zum Ausbleiben der katalytischen Aktivität kommt. Teilweise lassen sich Faltungsprobleme durch Optimierung des Wachstumsmediums verringern, indem Bedingungen geschaffen werden, die dem natürlichen Milieu angeglichen werden.

Um die Expression von *sus1* im Streptomyceten-Wirt zu ermöglichen, wurde die *sus1*-Sequenz im Rahmen dieser Arbeit umgeschrieben und das synthetische Gen *susy_GC* hergestellt. Die Untersuchungen zur Expression des Codon-optimierten Gens *susy_GC* sind noch nicht abgeschlossen.

4.3 Expression von Desoxyzuckerbiosynthese-Proteinen

Die an der Desoxyzuckerbiosynthese beteiligten Proteine UrdR, AviS bzw. UrdS und AviT aus dem Urdamycin-Produzenten *S. fradiae* Tü2717 bzw. dem Avilamycin-Produzenten *S. viridochromogenes* Tü57 waren für die Überexpression als Histidin-Fusionsproteine in Streptomyceten-Wirten vorgesehen.

UrdR und AviT konnten ohne Schwierigkeiten als lösliche Proteine nachgewiesen werden. Im Fall der dTDP-4-Keto-2,6-didesoxy-D-glucose-Reduktase UrdR konnte zudem der Nachweis der Enzymaktivität erbracht werden.

Die 2,3-Dehydratasen AviS bzw. UrdS konnten trotz unterschiedlicher Expressionskonstrukte weder mit N-terminalem noch mit C-terminalem His-Tag in löslicher Form exprimiert und aufgereinigt werden.

Da sich die Expression einer 2,3-Dehydratase in Streptomyceten nicht umsetzen ließ, wurde durch Mitarbeiter von Prof. Dr. L. Elling (RWTH Aachen) das *aviS*-Gen verwendet, um es in *E. coli* zu exprimieren. Obwohl *E.* coli-Bakterien zur Expression von Streptomyceten-Proteinen nicht immer optimal geeignet sind, konnte AviS in löslicher Form isoliert werden.

Die Enzyme AviS und AviT konnten erfolgreich bei der chemoenzymatischen Synthese von dNDP-4-Keto-2,6-didesoxy-D-glucose im analytischen Maßstab eingesetzt werden. Der letzte Reaktionsschritt zum Erhalt der dNDP-D-Olivose, der durch die 4-Ketoreduktase UrdR katalysiert werden soll, konnte unter den gewählten Bedingungen bisher nicht vollzogen werden.

Wenn weitere Optimierungen die chemoenzymatische Synthese von Desoxyzuckern im präparativen Maßstab ermöglichen, so wäre dies die Grundlage zur Erschließung anderer Desoxyzucker-Strukturen sowie deren Einsatz in Fütterungsexperimenten zur Untersuchung von Enzymfunktionen und zur Generierung neuer Antibiotikastrukturen.

5 Literaturverzeichnis

Vorab vier Verweise auf Autoren, die Sequenzdaten veröffentlicht haben, zu denen bisher keine Publikation erschienen ist.

Copeland, A., Lucas, S., Lapidus, A., Barry, K., Detter, J.C., Glavina, T., Hammon, N., Israni, S., Pitluck, S. und Richardson, P. A) Sequencing of the draft genome and assembly of *Trichodesmium erythraeum* IMS101.

Copeland, A., Lucas, S., Lapidus, A., Barry, K., Detter, J.C., Glavina, T., Hammon, N., Israni, S., Pitluck, S. und Richardson, P. B) Sequencing of the draft genome and assembly of *Frankia* sp. EAN1pec.

Halo,L., Wang,Y., Mäntsälä,P., Hakala,J. und Ylihonko,K. Characterization of the gene cluster involved in rhodomycin biosynthesis

Saito,H., Brünker,P., Martin,R. und Minas,W. Streptomyces collinus DSM2012 rubromycin biosynthesis gene cluster.

Ahlert,J., Shepard,E., Lomovskaya,N., Zazopoulos,E., Staffa,A., Bachmann,B.O., Huang,K., Fonstein,L., Czisny,A., Whitwam,R.E., Farnet,C.M. und Thorson,J.S. (2002). The calicheamicin gene cluster and its iterative type I enediyne PKS. *Science* **297** (5584), 1173-1176.

Altschul,S.F., Madden,T.L., Schäffer,A.A., Zhang,J., Zhang,Z., Miller,W. und Lipman,D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* **25** (17), 3389-3402.

Avigad, G. (1982). Sucrose and other disaccharides. In: Encyclopedia of plant physiology. Herausg.: Loewus, T.A., Tanner W., Springer, Heidelberg, 217-347.

Bao,W., Sheldon,P.J., Wendt-Pienkowski,E. und Hutchinson,C.R. (1999). The *Streptomyces peucetius dpsC* gene determines the choice of starter unit in biosynthesis of the daunorubicin polyketide. *J. Bacteriol.* **181** (15), 4690-4695.

Bate, N., Butler, A.R., Smith, I.P. und Cundliffe, E. (2000). The mycarose-biosynthetic genes of *Streptomyces fradiae*, producer of tylosin. *Microbiology* **146** (1), 139-146.

Beck,J., Ripka,S., Siegner,A., Schiltz,E. und Schweizer,E. (1990). The multifunctional 6-methylsalicylic acid synthase gene of *Penicillium patulum*. Its gene structure relative to that of other polyketide synthases. *Eur. J. Biochem.* **192** (2), 487-498.

Bentley, S.D. und andere (2002). Complete genome sequence of the model actinomycete *Streptomyces* coelicolor A3(2). *Nature* **417** (6885), 141-147.

Bevitt,D.J., Cortés,J., Haydock,S.F. und Leadlay,P.F. (1992). 6-Deoxyerythronolide-B synthase 2 from *Saccharopolyspora erythraea*. Cloning of the structural gene, sequence analysis and inferred domain structure of the multifunctional enzyme. *Eur. J. Biochem.* **204** (1), 39-49.

Bibb,M.J., Biró,S., Motamedi,H., Collins,J.F. und Hutchinson,C.R. (1989). Analysis of the nucleotide sequence of the *Streptomyces glaucescens tcml* genes provides key information about the enzymology of polyketide antibiotic biosynthesis. *EMBO J.* **8** (9), 2727-2736.

Bierman, M., Logan, R., O'Brien, K., Seno, E.T., Rao, R.N. und Schoner, B.E. (1992). Plasmid cloning vectors for the conjugal transfer of DNA from *Escherichia coli* to *Streptomyces* spp. *Gene* **116** (1), 43-49.

Bililign, T., Hyun, C.G., Williams, J.S., Czisny, A.M. und Thorson, J.S. (2004). The hedamycin locus implicates a novel aromatic PKS priming mechanism. *Chem. Biol.* **11** (7), 959-969.

Blanco,G., Fernández,E., Fernández,M.J., Braña,A.F., Weissbach,U., Künzel,E., Rohr,J., Méndez,C. und Salas,J.A. (2000). Characterization of two glycosyltransferases involved in early glycosylation steps during biosynthesis of the antitumor polyketide mithramycin by *Streptomyces argillaceus*. *Mol. Gen. Genet.* **262** (6), 991-1000.

Bourne, Y. und Henrissat, B. (2001). Glycoside hydrolases and glycosyltransferases: families and functional modules. *Curr. Opin.Struct.Biol.*, **11**, 593-600.

Brawner, M.E., Auerbach, J.I., Fornwald, J.A., Rosenberg, M. und Taylor, D.P. (1985). Characterization of *Streptomyces* promoter sequences using the *Escherichia coli* galactokinase gene. *Gene* **40** (2-3), 191-201.

Brüggemann,H., Bäumer,S., Fricke,W.F., Wiezer,A., Liesegang,H., Decker,I., Herzberg,C., Martínez-Arias,R., Merkl,R., Henne,A. und Gottschalk,G. (2003). The genome sequence of *Clostridium tetani*, the causative agent of tetanus disease. *Proc. Natl. Acad. Sci. USA* **100** (3), 1316-1321.

Brünker, P., McKinney, K., Sterner, O., Minas, W. und Bailey, J.E. (1999). Isolation and characterization of the naphthocyclinone gene cluster from *Streptomyces arenae* DSM 40737 and heterologous expression of the polyketide synthase genes. *Gene* **227** (2), 125-135.

Brünker, P., Sterner, O., Bailey, J.E. und Minas, W. (2001). Heterologous expression of the naphthocyclinone hydroxylase gene from *Streptomyces arenae* for production of novel hybrid polyketides. *Antonie Van Leeuwenhoek* **79** (3-4), 235-245.

Bullock,W.O., Fernandez,J.M. und Short,J.M. (1987). XL1-Blue: A high efficiency plasmid transforming *recA Escherichia coli* strain with beta-galactosidase selection. *Biotechniques* **5** (4), 376-379

Buzzetti,F., Eisenberg,F., Grant,H.N., Keller-Schierlein,W., Voser,W. und Zähner,H. (1968). Avilamycin. *Experientia* **24** (4), 320-323.

Campbell, J.A., Davies, G.J., Bulone, V. und Henrissat, B. (1997). A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. *Biochem. J.* **326** (3), 929-939 [Erratum in *Biochem. J.* (1998). **329** (3), 719].

Carreras,C.W. und Khosla,C. (1998). Purification and *in vitro* reconstitution of the essential protein components of an aromatic polyketide synthase. *Biochemistry* **37**(8), 2084-2088.

Chang, G. (2003). Multidrug resistance ABC transporters. FEBS Lett. 555 (1), 102-105.

Chater,K.F. und Bibb,M.J. (1997). Regulation of bacterial antibiotic production. In: *Biotechnology* **7**, 57-105. Products of secondary metabolism. Herausg.: Kleinkauf,H. und Dören,H.V., VCH, Weinheim.

Chater,K.F. und Hopwood,D.A. (1993). *Streptomyces* genetics. In: *Bacillus subtilis* and other gram-positive bacteria: physiology, biochemistry, and molecular genetics. Herausg.: **Sonenshein,A.L.**, American Society for Microbiology, Washington, D.C., 83-99

Chen,H., Thomas,M.G., Hubbard,B.K., Losey,H.C., Walsh,C.T. und Burkart,M.D. (2000). Deoxysugars in glycopeptide antibiotics: enzymatic synthesis of TDP-L-epivancosamine in chloroeremomycin biosynthesis. *Proc. Natl. Acad. Sci. USA* **97** (22), 11942-11947.

Child,C.J., Spencer,J.B., Bhogal,P. und Shoolingin-Jordan,P.M. (1996). Structural similarities between 6methylsalicylic acid synthase from *Penicillium patulum* and vertebrate type I fatty acid synthase: evidence from thiol modification studies. *Biochemistry* **35** (38), 12267-12274.

Cochrane, V.W. (1996). Physiology of actinomycetes. Ann. Rev. Microbiol. 15, 1-26.

Cortés, J., Liras, P., Castro, J.M. und Martin, J.F. (1986). Glucose regulation of cephamycin biosynthesis in *Streptomyces lactamdurans* is exerted on the formation of alphaaminoadipyl-cysteinyl-valine and deacetoxycephalosporin C synthase. *J. Gen. Microbiol.* **132** (7), 1805-1814.

Coutinho, P.M., Deleury, E., Davies, G.J., Henrissat, B. (2003). An evolving hierarchical family classification for glycosyltransferases. *J. Mol. Biol.* 328 (2), 307-317.

Dagert,M. und Ehrlich,S.D. (1979). Prolonged incubation in calcium chloride improves the competence of *Escherichia coli* cells. *Gene* **6** (1), 23-28.

Davies, G.J. (2001). Sweet secrets of synthesis. Nat. Struct. Biol. 8, 98-100.

Davis,B.D. und Mingioli,E.S. (1950). Mutants of *Escherichia coli* requiring methionine or vitamin B12. *J. Bacteriol.* **60** (1), 17-28.

DeBoer,C., Caron,E.L. und Hinman,J.W. (1953). Amicetin, a new Streptomyces antibiotic. J. Am. Chem. Soc. 75 (2), 499-500.

Decker,H. und Haag,S. (1995). Cloning and characterization of a polyketide synthase gene from *Streptomyces fradiae* Tü2717, which carries the genes for biosynthesis of the angucycline antibiotic urdamycin A and a gene probably involved in its oxygenation. *J. Bacteriol.* **177** (21), 6126-6136.

Della Bruna, C., Ricciardi, M.L. und Sanfilippo, A. (1973). Axenomycins, new cestocidal antibiotics. *Antimicrob. Agents Chemother.* **3** (6), 708-710.

Dimroth, P., Walter, H. und Lynen, F. (1970). Biosynthese von 6-Methylsalicylsäure [Biosynthesis of 6-methyl-salicylic acid]. Eur. J. Biochem. 13 (1), 98-110.

Distler,J., Ebert,A., Mansouri,K., Pissowotzki,K., Stockmann,M. und Piepersberg,W. (1987). Gene cluster for streptomycin biosynthesis in *Streptomyces griseus*: nucleotide sequence of three genes and analysis of transcriptional activity. *Nucleic Acids Res.* **15** (19), 8041-8056.

Domann,S. (2000). Dissertation: Untersuchungen zum Wirkmechanismus der Landomycine und zur Biosynthese der Desoxyzucker D-Olivose und L-Rhodinose in den Angucyclin-Antibiotika Landomycin A und Urdamycin A. Eberhard-Karls-Universität, Tübingen.

Donadio, S., Staver, M.J., McAlpine, J.B., Swanson, S.J. und Katz, L. (1991). Modular organization of genes required for complex polyketide biosynthesis. *Science*, **252** (5006), 675-679.

Doumith,M., Weingarten,P., Wehmeier,U.F., Salah-Bey,K., Benhamou,B., Capdevila,C., Michel,J.M., Piepersberg,W. und Raynal,M.C. (2000). Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea. Mol. Gen. Genet. 264 (4), 477-485.

Drautz,H., Zähner,H., Rohr,J. und Zeeck,A. (1986). Metabolic products of microorganisms. 234. Urdamycins, new angucycline antibiotics from *Streptomyces fradiae*. I. Isolation, characterization and biological properties. *J. Antibiot.* **39** (12), 1657-1669.

Evans, P.D., Cook, S.N., Riggs, P.D. und Noren, C.J. (1995). LITMUS: multipurpose cloning vectors with a novel system for bidirectional *in vitro* transcription. *Biotechniques* **19** (1), 130-135.

Fernández-Moreno, M.A., Carbó, L., Cuesta, T., Vallin, C. und Malpartida, F. (1998). A silent ABC transporter isolated from *Streptomyces rochei* F20 induces multidrug resistance. *J. Bacteriol.* **180** (16), 4017-4023.

Flett,F., Mersinias,V. und Smith,C.P. (1997). High efficiency intergeneric conjugal transfer of plasmid DNA from *Escherichia coli* to methyl DNA-restricting streptomycetes. *FEMS Microbiol. Lett.* **155** (2), 223-229.

Fu,X., Albermann,C., Jiang,J., Liao,J., Zhang,C. und Thorson,J.S. (2003). Antibiotic optimization via *in vitro* glycorandomization. *Nat. Biotechnol.* **21** (12), 1467-1469.

Funa, N., Ohnishi, Y., Fujii, I., Shibuya, M., Ebizuka, Y. und Horinouchi, S. (1999). A new pathway for polyketide synthesis in microorganisms. *Nature* **400** (6747), 897-899.

Gagneux,P. und Varki, A. (1999). Evolutionary considerations in relating oligosaccharide diversity to biological function. *Glycobiology* **9** (8), 747-755.

Gaisser, S., Trefzer, A., Stockert, S., Kirschning, A. und Bechthold, A. (1997a). Cloning of an avilamycin biosynthetic gene cluster from *Streptomyces viridochromogenes* Tü57. *J. Bacteriol.* **179** (20), 6271-6278.

Gaisser, S., Bohm, G.A., Cortés, J. und Leadlay, P.F. (1997b). Analysis of seven genes from the *eryAI-eryK* region of the erythromycin biosynthetic gene cluster in *Saccharopolyspora erythraea*. *Mol. Gen. Genet.* **256** (3), 239-251.

Galmarini,O.L. und Deulofeu,V. (1961). Curamycin. I. Isolation and analysis of some hydrolysis products. *Tetrahedron* **15**, 76-88.

Gao,X., Yo,P., Keith,A., Ragan,T.J. und Harris,T.K. (2003). Thermodynamically balanced inside-out (TBIO) PCR-based gene synthesis: a novel method of primer design for high-fidelity assembly of longer gene sequences. *Nucleic Acids Res.* **31** (22), e143

Gehring,A.M., DeMoll,E., Fetherston,J.D., Mori,I., Mayhew,G.F., Blattner,F.R., Walsh,C.T. und Perry,R.D. (1998a). Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis. *Chem. Biol.* **5** (10), 573-586.

Gehring, A.M., Mori, I., Perry, R.D. und Walsh, C.T. (1998b). The nonribosomal peptide synthetase HMWP2 forms a thiazoline ring during biogenesis of Yersiniabactin, an iron-chelating virulence factor of *Yersinia pestis*. *Biochemistry* **37** (33), 11637-11650.

Gherna,R., Pienta,P. und Cote,R. (Herausg.) (1992). Catalogue of bacteria and phages. 18. Auflage, American Type Culture Collection, Rockville, MD, USA.

Gomi,S., Sasaki,T., Itoh,J. und Sezaki,M. (1988). SF2446, new benzo[a]naphthacene quinone antibiotics. II. The structural elucidation. *J. Antibiot.* **41** (4), 425-432.

Guilfoile, P.G. und Hutchinson, C.R. (1991). A bacterial analog of the *mdr* gene of mammalian tumor cells is present in *Streptomyces peucetius*, the producer of daunorubicin and doxorubicin. *Proc. Natl. Acad. Sci. USA* 88 (19), 8553-8557.

Gusarov, I. und Nudler, E. (1999). The mechanism of intrinsic transcription termination. Mol. Cell 3 (4), 495-504.

Ha,S., Walker,D., Shi,Y. und Walker,S. (2000). The 1.9 Å crystal structure of *Escherichia coli* MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. *Prot. Sci.* **9**, 1045-1052.

Han,L., Yang,K., Kulowski,K., Wendt-Pienkowski,E., Hutchinson,C.R. und Vining,L.C. (2000). An acylcoenzyme A carboxylase encoding gene associated with jadomycin biosynthesis in *Streptomyces venezuelae* ISP5230. *Microbiology* **146** (4), 903-910.

Haydock,S.F., Dowson,J.A., Dhillon,N., Roberts,G.A., Cortés,J. und Leadlay,P.F. (1991). Cloning and sequence analysis of genes involved in erythromycin biosynthesis in *Saccharopolyspora erythraea*: sequence similarities between EryG and a family of S-adenosylmethionine-dependent methyltransferases. *Mol. Gen. Genet.* **230** (1-2), 120-128.

Herold,K. (2005). Dissertation: Untersuchungen zur Struktur, Wirkungsweise und Biosynthese der Cervimycine als Verbindungen einer besonderen Klasse aromatischer Polyketide aus Streptomyceten. Friedrich-Schiller-Universität, Jena.

Herold,K., Xu,Z., Gollmick,F.A., Gräfe,U. und Hertweck,C. (2004). Biosynthesis of cervimycin C, an aromatic polyketide antibiotic bearing an unusual dimethylmalonyl moiety. *Org. Biomol. Chem.* **2** (17), 2411-2414.

Herold,K., Gollmick,F.A., Groth,I., Roth,M., Menzel,K.D., Mollmann,U., Gräfe,U. und Hertweck,C. (2005). Cervimycin A-D: A polyketide glycoside complex from a cave bacterium can defeat vancomycin resistance. *Chemistry* **11** (19), 5523-5530.

Hoffmeister, D., Ichinose, K., Domann, S., Faust, B., Trefzer, A., Dräger, G., Kirschning, A., Fischer, C., Künzel, E. und Bearden, D.W. (2000). The NDP-sugar co-substrate concentration and the enzyme expression level influence the substrate specificity of glycosyltransferases: cloning and characterization of deoxysugar biosynthetic genes of the urdamycin biosynthetic gene cluster. *Chem. Biol.* **7** (11), 821-831.

Hoffmeister, D., Ichinose, K. und Bechthold, A. (2001). Two sequence elements of glycosyltransferases involved in urdamycin biosynthesis are responsible for substrate specificity and enzymatic activity. *Chem. Biol.* 8 (6), 557-567.

Hofmann,C. (2005). Dissertation: Charakterisierung neuer Avilamycin-Derivate und Klinische Studie zur antibiotischen Sequentialtherapie bei Patienten mit Fieber in der Neutropenie. Albert-Ludwigs-Universität, Freiburg.

Hong, S.K., Kito, M., Beppu, T. und Horinouchi, S. (1991). Phosphorylation of the AfsR product, a global regulatory protein for secondary-metabolite formation in *Streptomyces coelicolor* A3(2). *J. Bacteriol.* **173**, 2311-2318.

Hoover, D.M. und Lubkowski, J. (2002). DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis. *Nucleic Acids Res.* **30** (10), e43.

Hopwood, D.A. (1997). Genetic Contributions to Understanding Polyketide Synthases. *Chem. Rev.* 97 (7), 2465-2498.

Hopwood,D.A., Bibb,M.J., Chater,K.F., Kieser,T., Bruton,C.J., Kieser,H.M., Lydiate,D.J., Smith,C.P., Ward,J.M. und Schrempf,H. (1999). Genetic manipulation of *Streptomyces*: a laboratory manual. The John Innes Foundation, Norwich, U.K.

Hopwood, D.A, Malpartida, F., Kieser, H.M., Ikeda, H., Duncan, J., Fujui, I., Rudd, B.A.M., Floss, H.G. und Omura, S. (1985). Production of 'hybrid' antibiotics by genetic engineering. *Nature* **314** (6012), 642-644.

Hopwood, D.A. und Sherman, D.H. (1990). Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. *Annu. Rev. Genet.* 24, 37-66.

Horinouchi, S. und Beppu, T. (1992). Regulation of secondary metabolism and cell differentiation in *Streptomyces*: A-factor as a microbial hormone and the AfsR protein as a component of a two-component regulatory system. *Gene* **115**, 167-172.

Hutchinson, C.R. (1998). Combinatorial biosynthesis for new drug discovery. Curr. Opin. Microbiol. 1 (3), 319-329.

Hu,Y. und Walker,S. (2002). Remarkable structural similarities between diverse glycosyltransferases. *Chem Biol.* **9** (12), 1287-1296.

Hütter, R. (1962). Zur Systematik der Actinomyceten. 7. Streptomyceten mit blauem, blaugrünem und grünem Luftmycel. Archiv für Mikrobiologie 43, 23-49.

Ichinose,K., Ozawa,M., Itou,K., Kunieda,K. und Ebizuka,Y. (2003). Cloning, sequencing and heterologous expression of the medermycin biosynthetic gene cluster of *Streptomyces* sp. AM-7161: towards comparative analysis of the benzoisochromanequinone gene clusters. *Microbiology* **149** (7), 1633-1645.

Ikeda,H., Ishikawa,J., Hanamoto,A., Shinose,M., Kikuchi,H., Shiba,T., Sakaki,Y., Hattori,M. und Omura,S. (2003). Complete genome sequence and comparative analysis of the industrial microorganism *Streptomyces avermitilis*. *Nat. Biotechnol.* **21** (5), 526-531.

Ikeda,H., Seno,E.T., Bruton,C.J. und Chater,K.F. (1984). Genetic mapping, cloning and physiological aspects of the glucose kinase gene of *Streptomyces coelicolor. Mol. Gen. Genet.* **196** (3), 501-507.

Ishikawa,J., Yamashita,A., Mikami,Y., Hoshino,Y., Kurita,H., Hotta,K., Shiba,T. und Hattori,M. (2004). The complete genomic sequence of *Nocardia farcinica* IFM 10152. *Proc. Natl. Acad. Sci. USA* **101** (41), 14925-14930.

Ishiyama,D., Vujaklija,D. und Davies,J. (2004). Novel pathway of salicylate degradation by *Streptomyces* sp. strain WA46. *Appl. Environ. Microbiol.* **70** (3), 1297-1306.

Jackson, S.P. und Tjian, R. (1988). O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. *Cell* 55 (1), 125-133.

Jacobsen, J.R., Hutchinson, C.R., Cane, D.E. und Khosla, C. (1997). Precursor-directed biosynthesis of erythromycin analogs by an engineered polyketide synthase. *Science* **277** (5324), 367-369.

Jakobi,K. und Hertweck,C. (2004). A gene cluster encoding resistomycin biosynthesis in *Streptomyces resistomycificus*; exploring polyketide cyclization beyond linear and angucyclic patterns. *J. Am. Chem. Soc.* **126** (8), 2298-2299.

Jungmann,V., Molnár,I., Hammer,P.E., Hill,D.S., Zirkle,R., Buckel,T.G., Buckel,D., Ligon,J.M. und Pachlatko,J.P. (2005). Biocatalytic conversion of avermectin to 4"-oxo-avermectin: characterization of biocatalytically active bacterial strains and of cytochrome p450 monooxygenase enzymes and their genes. *Appl. Environ. Microbiol.* **71** (11), 6968-6976.

Kagan, R.M. und Clarke, S. (1994). Widespread occurrence of three sequence motifs in diverse Sadenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. *Arch. Biochem. Biophys.* **310** (2), 417-427.

Kaur, P., Rao, D.K. und Gandlur, S.M. (2005). Biochemical characterization of domains in the membrane subunit DrrB that interact with the ABC subunit DrrA: identification of a conserved motif. *Biochemistry* **44** (7), 2661-2670.

Kealey, J.T., Liu, L., Santi, D.V., Betlach, M.C. und Barr, P.J. (1998). Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. *Proc. Natl. Acad. Sci. USA* **95** (2) 505-509.

Kelemen,G.H., Brown,G.L., Kormanec,J., Potuckova,L., Chater,K.F. und Buttner, M.J. (1996). The positions of the sigma-factor genes, *whiG* and *sigF*, in the hierarchy controlling the development of spore chains in the aerial hyphae of *Streptomyces coelicolor* A3(2). *Mol. Microbiol.* **21** (3), 593-603.

Khan,S.H. und Hindsgaul,O. (1994). Chemical synthesis of oligosaccharides. In: *Molecular Glycobiology*: Frontiers in molecular biology. Herausg.: Fukuda,M. und Hindsgaul,O., Oxford University Press, Oxford, 206-229.

Kieser,T., Bibb,M.J., Buttner,M.J., Chater,K.F. und Hopwood,D.A. (2000). General introduction to actinomycete biology. In: Practical *Streptomyces* Genetics. The John Innes Foundation, Norwich, U.K., 1-42.

Kikuchi, N., Kwon, Y.D., Gotoh, M. und Narimatsu, H. (2003). Comparison of glycosyltransferase families using the profile hidden Markov model. *Biochem.Biophys.Res.Commun.*, **310** (2), 574-579.

Kirschning, A., Bechthold, A. und Rohr, J. (1997). Chemical and Biochemical Aspects of Deoxysugars and Deoxysugar Oligosaccharides. *Top. Curr. Chem.* **188**, 1-84.

Klaffke,W. (1994). Application of enzymes in the synthesis of saccharides and activated sugars. Carbohydr. Europe 10, 9-17

Krogh,A., Larsson,B., von Heijne,G. und Sonnhammer,E.L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. *J. Mol. Biol.* **305** (3), 567-580.

Lambalot,R.H., Gehring,A.M., Flugel,R.S., Zuber,P., Lacelle,M., Marahiel,M.A., Reid,R., Khosla,C. und Walsh,C.T. (1996). A new enzyme superfamily: The phosphopantetheinyl transferases. *Chem. Biol.* **3** (11), 923-936.

Lambalot, R.H. und Walsh, C.T. (1995). Cloning, overproduction, and characterization of the *Escherichia coli* holo-acyl carrier protein synthase. *J. Biol. Chem.* **270** (42), 24658-24661.

Lawlor, E.J., Baylis, H.A. und Chater, K.F. (1987) Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in *Streptomyces coelicolor* A3(2). *Genes Dev.* **1** (10), 1305-1310.

Le Gouill,C., Desmarais,D. und Dery,C.V. (1993). Saccharopolyspora hirsuta 367 encodes clustered genes similar to ketoacyl synthase, ketoacyl reductase, acyl carrier protein, and biotin carboxyl carrier protein. *Mol. Gen. Genet.* 240 (1), 146-150.

Lee, P.C., Umeyama, T. und Horinouchi, S. (2002). *afsS* is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in *Streptomyces coelicolor* A3(2). *Mol. Microbiol.* **43** (6), 1413-1430.

Leskiw,B.K., Bibb,M.J. und Chater,K.F. (1991a). The use of a rare codon specifically during development? *Mol. Microbiol.* 5 (12), 2861-2867.

Leskiw,B.K., Lawlor,E.J., Fernandez-Abalos,J.M. und Chater, K.F. (1991b). TTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative, *Streptomyces* mutants. *Proc. Natl. Acad. Sci. USA* **88** (6), 2461-2465.

Leskiw, B.K., Mah, R., Lawlor, E.J. und Chater, K.F. (1993). Accumulation of *bldA*-specified tRNA is temporally regulated in *Streptomyces coelicolor* A3(2). *J. Bacteriol.* **175** (7), 1995-2005.

Li,A. und Piel,J. (2002). A gene cluster from a marine *Streptomyces* encoding the biosynthesis of the aromatic spiroketal polyketide griseorhodin A. *Chem. Biol.* **9** (9), 1017-1026.

Liu,H.W. und Thorson,J.S. (1994). Pathways and mechanisms in the biogenesis of novel deoxysugars by bacteria. *Annu. Rev. Microbiol.* **48**, 223-256.

Liu,J. und Mushegian,A. (2003). Three monophyletic superfamilies account for the majority of the known glycosyltransferases. *Protein Sci.*, **12** (7), 1418-1431.

Liu,W., Christenson,S.D., Standage,S. und Shen,B. (2002). Biosynthesis of the enediyne antitumor antibiotic C-1027. *Science* 297 (5584), 1170-1173.

Liu,W., Nonaka,K., Nie,L., Zhang,J., Christenson,S.D., Bae,J., Van Lanen,S.G., Zazopoulos,E., Farnet,C.M., Yang,C.F. und Shen,B. (2005). The neocarzinostatin biosynthetic gene cluster from *Streptomyces carzinostaticus* ATCC 15944 involving two iterative type I polyketide synthases. *Chem. Biol.* **12** (3), 293-302.

Lombó,F., Blanco,G., Fernández,E., Méndez,C. und Salas,J.A. (1996). Characterization of *Streptomyces argillaceus* genes encoding a polyketide synthase involved in the biosynthesis of the antitumor mithramycin. *Gene* **172** (1), 87-91.

Ly,H.D. und Withers,S.G. (1999). Mutagenesis of glycosidases. Annu. Rev. Biochem. 68, 487-522.

MacNeil,D.J., Gewain,K.M., Ruby,C.L., Dezeny,G., Gibbons,P.H. und MacNeil,T. (1992). Analysis of *Streptomyces avermitilis* genes required for avermectin biosynthesis utilizing a novel integration vector. *Gene* **111** (1), 61-68.

Malpartida,F. und Hopwood,D.A. (1984). Molecular cloning of the whole biosynthetic pathway of a *Streptomyces* antibiotic and its expression in a heterologous host. *Nature* **309** (5967), 462-464.

Marahiel, M.A., Stachelhaus, T. und Mootz, H.D. (1997). Modular peptide synthetases involved in nonribosomal peptide synthesis. *Chem. Rev.* 97 (7), 2651-2673.

Marsden, A.F.A., Wilkinson, B., Cortés, J., Dunster, N.J., Staunton, J. und Leadlay, P.F. (1998). Engineering broader specificity into an antibiotic-producing polyketide synthase. *Science* **279** (5348), 199-202.

Marti,T., Hu,Z., Pohl,N.L., Shah,A.N. und Khosla,C. (2000). Cloning, nucleotide sequence, and heterologous expression of the biosynthetic gene cluster for R1128, a non-steroidal estrogen receptor antagonist. Insights into an unusual priming mechanism. *J. Biol. Chem.* **275** (43), 33443-33448.

Martin, J.F. (2004). Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story. *J. Bacteriol.* **186** (16), 5197-5201.

Martin, M.F. und Liras, P. (1989). Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. *Annu. Rev. Microbiol.* **43**, 173-206.

Matsumoto, A., Hong, S.K., Ishizuka, H., Horinouchi, S. und Beppu, T. (1994). Phosphorylation of the AfsR protein involved in secondary metabolism in *Streptomyces* species by a eukaryotic-type protein kinase. *Gene* **146**, 47-56.

McDaniel, R., Ebert-Khosla, S., Hopwood, D.A. und Khosla, C. (1993). Engineered biosynthesis of novel polyketides. *Science* 262 (5139), 1546-1550.

McDaniel, R., Ebert-Khosla, S., Hopwood, D.A. und Khosla, C. (1994). Engineered biosynthesis of novel polyketides: *act*/VII and *act*/V genes encode aromatase and cyclase enzymes, respectively *J. Am. Chem. Soc.* **116** (24), 10855-10859.

McNicholas, P.M., Najarian, D.J., Mann, P.A., Hesk, D., Hare, R.S., Shaw, K.J. und Black, T.A. (2000). Evernimicin binds exclusively to the 50S ribosomal subunit and inhibits translation in cell-free systems derived from both gram-positive and gram-negative bacteria. *Antimicrob. Agents Chemother.* **44** (5), 1121-1126.

Méndez, C. und Salas, J.A. (2001). The role of ABC transporters in antibiotic-producing organisms: drug secretion and resistance mechanisms. *Res. Microbiol.* **152** (3-4), 341-350.

Menéndez, N., Nur-e-Alam, M., Braña, A.F., Rohr, J., Salas, J.A. und Méndez, C. (2004). Biosynthesis of the antitumor chromomycin A3 in *Streptomyces griseus*: analysis of the gene cluster and rational design of novel chromomycin analogs. *Chem. Biol.* **11** (1), 21-32.

Mertz, J.L., Peloso, J.S., Barker, B.J., Babbitt, G.E., Occolowitz, J.L., Simson, V.L., Kline, R.M. (1986). Isolation and structural identification of nine avilamycins. *J. Antibiot.* **39** (7), 877-887.

Methé, B.A., Nelson, K.E., Eisen, J.A. et al. (2003). Genome of *Geobacter sulfurreducens*: metal reduction in subsurface environments. *Science* 302 (5652), 1967-1969.

Missiakas, D. und Raina, S. (1998). The extracytoplasmic function sigma factors: role and regulation. *Mol. Microbiol.* 28 (6), 1059-1066.

Mochizuki,S., Hiratsu,K., Suwa,M., Ishii,T., Sugino,F., Yamada,K. und Kinashi,H. (2003). The large linear plasmid pSLA2-L of *Streptomyces rochei* has an unusually condensed gene organization for secondary metabolism. *Mol. Microbiol.* **48** (6), 1501-1510.

Molnár, I., Hill, D.S., Zirkle, R., Hammer, P.E., Gross, F., Buckel, T.G., Jungmann, V., Pachlatko, J.P. und Ligon, J.M. (2005). Biocatalytic conversion of avermectin to 4"-oxo-avermectin: heterologous expression of the ema1 cytochrome P450 monooxygenase. *Appl. Environ. Microbiol.* **71** (11), 6977-6985.

Momose,I., Chen,W., Kinoshita,N., Iinuma,H., Hamada,M. und Takeuchi,T. (1998a). Polyketomycin, a new antibiotic from *Streptomyces* sp. MK277-AF1. I. Taxonomy, production, isolation, physico-chemical properties and biological activities. *J. Antibiot.* **51** (1), 21-25.

Momose, I., Chen, W., Nakamura, H., Naganawa, H., Iinuma, H. und Takeuchi, T. (1998b). Polyketomycin, a new antibiotic from *Streptomyces* sp. MK277-AF1. II. Structure determination. *J. Antibiot.* **51** (1), 26-32.

Moore,B.S, Hertweck,C., Hopke,J.N., Izumikawa,M., Kalaitzis,J.A., Nilsen,G., O'Hare,T., Piel,J., Shipley,P.R., Xiang,L., Austin,M.B. und Noel,J.P. (2002). Plant-like biosynthetic pathways in bacteria: From benzoic acid to chalcone. *J. Nat. Prod.*, **65** (12), 1956-1962.

Moréra,S., **Imberty,A.**, **Aschke-Sonnenborn,U.**, **Rüger,W.** und **Freemont,P.S.** (1999). T4 phage β -glucosyl-transferase: substrate binding and proposed catalytic mechanism. *J. Mol. Biol.* **292** (3), 717-730.

Mulichak,A.M., Losey,H.C., Walsh,C.T. und Garavito,R.M. (2001). Structure of the UDP-glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics. *Structure* **9** (7), 547-557.

Nagao,K., Suzuki,K., Tokunaga,J., Miyazaki,H., Katayama,N., Mitsuyama,R. und Uyeda,M. (1996). DMI-2 and DMI-3, DNA methyltransferase inhibitors produced by *Streptomyces* sp. strain no. 560. *J. Enzyme Inhib.* **10** (2), 115-124.

Nakamura,Y., Gojobori,T. und Ikemura,T. (2000). Codon usage tabulated from international DNA sequence databases: status for the year 2000. *Nucleic Acids Res.* 28 (1), 292.

Ninet,L., Benazet,F., Charpentie,Y., Dubost,M., Florent,J., Lunel,J., Mancy,D., Preud'Homme,J. (1974). Flambamycin, a new antibiotic from *Streptomyces hygroscopicus* DS 23 230. *Experientia* **30** (11), 1270-1272.

Nishimura, A., Morita, M., Nishimura, Y. und Sugino, Y. (1990). A rapid and highly efficient method for preparation of competent *Escherichia coli* cells. *Nucleic Acids Res.* **18** (20), 6169.

Ogasawara,Y., Katayama,K., Minami,A., Otsuka,M., Eguchi,T. und Kakinuma,K. (2004). Cloning, sequencing, and functional analysis of the biosynthetic gene cluster of macrolactam antibiotic vicenistatin in *Streptomyces halstedii*. *Chem. Biol.* **11** (1), 79-86.

Omura,S., Ikeda,H., Ishikawa,J., Hanamoto,A., Takahashi,C., Shinose,M., Takahashi,Y., Horikawa,H., Nakazawa,H., Osonoe,T., Kikuchi,H., Shiba,T., Sakaki,Y. und Hattori,M. (2001). Genome sequence of an industrial microorganism *Streptomyces avermitilis*: deducing the ability of producing secondary metabolites. *Proc. Natl. Acad. Sci. USA* **98** (21), 12215-12220.

Onaka,H., Taniguchi,S., Igarashi,Y. und Furumai,T. (2002). Cloning of the staurosporine biosynthetic gene cluster from *Streptomyces* sp. TP-A0274 and its heterologous expression in *Streptomyces lividans*. *J. Antibiot*. **55** (12), 1063-1071.

Otten,S.L., Gallo,M.A., Madduri,K., Liu,X. und Hutchinson,C.R. (1997). Cloning and characterization of the *Streptomyces peucetius dnmZUV* genes encoding three enzymes required for biosynthesis of the daunorubicin precursor thymidine diphospho-L-daunosamine. *J. Bacteriol.* **179** (13), 4446-4450.

Pang,X., Aigle,B., Girardet,J.M., Mangenot,S., Pernodet,J.L., Decaris,B. und Leblond,P. (2004). Functional angucycline-like antibiotic gene cluster in the terminal inverted repeats of the *Streptomyces ambofaciens* linear chromosome. *Antimicrob. Agents Chemother.* **48** (2), 575-588.

Paululat, T., Zeeck, A., Gutterer, J.M. und Fiedler, H.P. (1999). Biosynthesis of polyketomycin produced by *Streptomyces diastatochromogenes* Tü 6028. *J. Antibiot.* **52** (2), 96-101.

Pelzer,S., Reichert,W., Huppert,M., Heckmann,D. und Wohlleben,W. (1997). Cloning and analysis of a peptide synthetase gene of the balhimycin producer *Amycolatopsis mediterranei* DSM5908 and development of a gene disruption/replacement system. *J. Biotechnol.* **56** (2), 115-128.

Pérez, M., Lombó, F., Zhu, L., Gibson, M., Braña, A.F., Rohr, J., Salas, J.A. und Méndez, C. (2005). Combining sugar biosynthesis genes for the generation of L- and D-amicetose and formation of two novel antitumor tetracenomycins. *Chem. Commun.* (12), 1604-1606.

Pontis, H.G., Babio, J.R. und Salerno, G. (1981). Reversible unidirectional inhibition of sucrose synthase activity by disulfides. PNAS 78 (11), 6667-6669.

Postma, P.W., Lengeler, J.W., Jacobson, G.R. (1993). Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. *Microbiol. Rev.* **57** (3), 543-594.

Prado,L., Lombó,F., Braña,A.F., Méndez,C., Rohr,J. und Salas,J.A. (1999). Analysis of two chromosomal regions adjacent to genes for a type II polyketide synthase involved in the biosynthesis of the antitumor polyketide mithramycin in *Streptomyces argillaceus*. *Mol. Gen. Genet.* **261** (2), 216-225.

Pulido, D. und Jiménez, A. (1987). Optimization of gene expression in *Streptomyces lividans* by a transcription terminator. *Nucleic Acids Res.*, **15** (10), 4227-4240.

Quirós,L.M., Carbajo,R.J und Salas,J.A. (2000). Inversion of the anomeric configuration of the transferred sugar during inactivation of the macrolide antibiotic oleandomycin catalyzed by a macrolide glycosyltransferase. *FEBS Lett.* **476** (3), 186-189.

Radominska-Pandya, A., Czernik, P.J., Little, J.M., Battaglia, E. und Mackenzie, P.I. (1999). Structural and functional studies of UDP-glucuronosyltransferases. *Drug Metab. Rev.* **31** (4), 817-899.

Räty,K., Kunnari,T., Hakala,J., Mäntsälä,P. und Ylihonko,K. (2000). A gene cluster from *Streptomyces galilaeus* involved in glycosylation of aclarubicin. *Mol. Gen. Genet.* **264** (1-2), 164-172.

Rajgarhia, V.B. und Strohl, W.R. (1997). Minimal *Streptomyces* sp. strain C5 daunorubicin polyketide biosynthesis genes required for aklanonic acid biosynthesis. *J. Bacteriol.* **179** (8), 2690-2696.

Reuter,K, Mofid,M.R., Marahiel,M.A. und Ficner,R. (1999). Crystal structure of the surfactin synthetaseactivating enzyme Sfp: a prototype of the 4'-phosphopantetheinyl transferase superfamily. *EMBO J.* **18** (23), 6823-6831.

Richardson,M.A., Kuhstoss,S., Solenberg,P., Schaus,N.A. und Rao,R.N. (1987). A new shuttle cosmid vector, pKC505, for streptomycetes: its use in the cloning of three different spiramycin-resistance genes from a *Streptomyces ambofaciens* library. *Gene* **61** (3), 231-241.

Rodríguez, A.M., Olano, C., Vilches, C., Méndez, C. und Salas, J.A. (1993). *Streptomyces antibioticus* contains at least three oleandomycin-resistance determinants, one of which shows similarity with proteins of the ABC-transporter superfamily. *Mol. Microbiol.* **8** (3), 571-582.

Römer,U., Schrader,H., Gunther,N., Nettelstroth,N., Frommer,W.B. und Elling,L. (2004). Expression, purification and characterization of recombinant sucrose synthase 1 from *Solanum tuberosum* L. for carbohydrate engineering. *J. Biotechnol.* **107** (2), 135-149.

Rohr,J. (1984). Dissertation: Strukturaufklärung und Struktur-Wirkungs-Beziehungen neuer, cytostatisch wirkender Antibiotika: Elloramycine und Urdamycine, Georg-August-Universität, Göttingen.

Rutherford,K., Parkhill,J., Crook,J., Horsnell,T., Rice,P., Rajandream,M.A. und Barrell,B. (2000). Artemis: sequence visualization and annotation. *Bioinformatics*. **16** (10), 944-945.

Sabater, B., Sebastian, J. und Asensio, C. (1972). Identification and properties of an inducible mannokinase from *Streptomyces violaceoruber. Biochim. Biophys. Acta* **284** (2), 406-413.

Salah-Bey,K., Doumith,M., Michel,J.M., Haydock,S., Cortés,J., Leadlay,P.F. und Raynal,M.C. (1998). Targetted gene inactivation for the elucidation of deoxysugar biosynthesis in the erythromycin producer *Saccharopolyspora erythraea*. Mol. *Gen. Genet.* **257** (5), 542-553.

Salas, J.A., Quiros, L.M. und Hardisson, C. (1984). Pathways of glucose catabolism during germination of Streptomyces spores. FEMS Microbiol. Lett. 25, 229-233

Sambrook, J., Fritsch, E.F. und Maniatis, T. (1989). Molecular cloning: a laboratory manual (second edition), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

Schimana, J., Fiedler, H.P., Groth, I., Süssmuth, R., Beil, W., Walker, M. und Zeeck, A. (2000). Simocyclinones, novel cytostatic angucyclinone antibiotics produced by *Streptomyces antibioticus* Tü 6040. I. Taxonomy, fermentation, isolation and biological activities. *J. Antibiot.* **53** (8), 779-787

Schneider,P. (1995). Diplomarbeit: Klonierung einer dTDP-Glucose-Synthetase und einer dTDP-Glucose-Dehydratase aus dem Urdamycin-Produzenten *S. fradiae* Tü2717 sowie Untersuchungen zur Herstellung hybrider Naturstoffe. Eberhard-Karls-Universität, Tübingen.

Schoepfer, R. (1993). The pRSET family of T7 promoter expression vectors for Escherichia *coli*. *Gene* **124** (1), 83-85.

Shen,B., Summers,R.G., Wendt-Pienkowski,E. und Hutchinson,C.R. (1995). The *Streptomyces glaucescens tcmKL* polyketide synthase and *tcmN* polyketide cyclase genes govern the size and shape of aromatic polyketides. *J.Am.Chem.Soc.* **117** (2), 6811-6821.

Shen,B. (2003). Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. *Curr. Opin. Chem. Biol.* **7** (2), 285-295.

Shoolingin-Jordan, P.M. und Campuzano, I.D.G. (1999). Biosynthesis of 6-Methylsalicylic Acid. In: Comprehensive Natural Products Chemistry: Polyketides and Other Secondary Metabolites Including Fatty Acids and Their Derivatives. Herausg.: **Sankawa, U., Barton, D.H.R. und Nakanishi, K.**, Elsevier, Oxford, 345-365.

Short, J.M., Fernández, J.M., Sorge, J.A. und Huse, W.D. (1988). Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. *Nucleic Acids Res.* **16** (15), 7583-7600.

Sletta,H., Borgos,S.E., Bruheim,P., Sekurova,O.N., Grasdalen,H., Aune,R., Ellingsen,T.E. und Zotchev,S.B. (2005). Nystatin biosynthesis and transport: *nysH* and *nysG* genes encoding a putative ABC transporter system in *Streptomyces noursei* ATCC 11455 are required for efficient conversion of 10-deoxynystatin to nystatin. *Antimicrob. Agents Chemother.* **49** (11), 4576-4583.

Soltero,F.V. und Johnson,M.J. (1953). The effect of the carbohydrate nutrition on penicillin production by *Penicillium chrysogenum* Q-176. *Appl Microbiol.* **1** (1), 52-57.

Spencer, J.B. und Jordan, P.M. (1992). Purification and properties of 6-methylsalicylic acid synthase from *Penicillium patulum. Biochem. J.* **288** (3), 839-846.

Staunton, J. und Weissman, K.J. (2001). Polyketide biosynthesis: a millenium review. Nat. Prod. Rep. 18 (4), 380-416.

Sthapit,B., Oh,T.J., Lamichhane,R., Liou,K., Lee,H.C., Kim,C.G. und Sohng,J.K. (2004). Neocarzinostatin naphthoate synthase: an unique iterative type I PKS from neocarzinostatin producer *Streptomyces carzinostaticus*. *FEBS Lett.* **566** (1-3), 201-206.

Stülke,J. und Hillen,W. (1998). Coupling physiology and gene regulation in bacteria: the phosphotransferase sugar uptake system delivers the signals. *Naturwissenschaften*. **85** (12), 583-592.

Stuible,H.P., Büttner,D., Ehlting,J., Hahlbrock,K. und Kombrink, E. (2000). Mutational analysis of 4coumarate:CoA ligase identifies functionally important amino acids and verifies ist close relationship to other adenylate-forming enzymes. *FEBS Lett.* **467** (1), 117-122.

Stumpp,T, Himbert,S. und Altenbuchner,J. (2005). Cloning of the netropsin resistance genes from Streptomyces flavopersicus NRRL 2820. *J. Basic Microbiol.* **45** (5), 355-362.

Summers,R.G., Donadio,S., Staver,M.J., Wendt-Pienkowski,E., Hutchinson,C.R. und Katz,L. (1997). Sequencing and mutagenesis of genes from the erythromycin biosynthetic gene cluster of *Saccharopolyspora erythraea* that are involved in L-mycarose and D-desosamine production. *Microbiology* **143** (10), 3251-3262.

Summers,R.G., Wendt-Pienkowski,E., Motamedi,H. und Hutchinson,C.R. (1992). Nucleotide sequence of the *tcmll-tcmlV* region of the tetracenomycin C biosynthetic gene cluster of *Streptomyces glaucescens* and evidence that the *tcmN* gene encodes a multifunctional cyclase-dehydratase-O-methyl transferase. *J. Bacteriol.* **174** (6), 1810-1820.

Sun,Y., Zhou,X., Dong,H., Tu,G., Wang,M., Wang,B. und Deng,Z. (2003). A complete gene cluster from *Streptomyces nanchangensis* NS3226 encoding biosynthesis of the polyether ionophore nanchangmycin. *Chem. Biol.* **10** (5), 431-441.

Thompson, C.J., Ward, J.M. und Hopwood, D.A. (1982). Cloning of antibiotic resistance and nutritional genes in streptomycetes. J. Bacteriol. 151 (2), 668-677.

Torkkell,S., Ylihonko,K., Hakala,J., Skurnik,M. und Mäntsälä,P. (1997). Characterization of *Streptomyces nogalater* genes encoding enzymes involved in glycosylation steps in nogalamycin biosynthesis. *Mol. Gen. Genet.* **256** (2), 203-209.

Treede,I., Jakobsen,L., Kirpekar,F., Vester,B., Weitnauer,G., Bechthold,A. und Douthwaite,S. (2003). The avilamycin resistance determinants AviRa and AviRb methylate 23S rRNA at the guanosine 2535 base and the uridine 2479 ribose. *Mol. Microbiol.* **49** (2), 309-318.

Trefzer, A., Salas, J.A. und Bechthold, A. (1999). Genes and enzymes involved in deoxysugar biosynthesis in bacteria. *Nat. Prod. Rep.* 16 (3), 283-299.

Trefzer,A., Fischer,C., Stockert,S., Westrich,L., Künzel,E., Girreser,U., Rohr,J. und Bechthold,A. (2001). Elucidation of the function of two glycosyltransferase genes (*lanGT1* and *lanGT4*) involved in landomycin biosynthesis and generation of new oligosaccharide antibiotics. *Chem. Biol.* **8** (12), 1239-1252.

Trefzer,A., Pelzer,S., Schimana,J., Stockert,S., Bihlmaier,C., Fiedler,H.P., Welzel,K., Vente,A. und Bechthold,A. (2002). Biosynthetic gene cluster of simocyclinone, a natural multihybrid antibiotic. *Antimicrob. Agents Chemother.* **46** (5), 1174-1182.

Ünligil, U.M. und Rini, J.M. (2000). Glycosyltransferase structure and mechanism. *Curr. Opin. Struct. Biol.* **10** (5), 510-517.

Volff, J.N., und Altenbuchner, J. (2000). A new beginning with new ends: linearisation of circular chromosomes during bacterial evolution. *FEMS Microbiol. Lett.* **186** (2), 143-150.

Vrielink,A., Rüger,W., Driessen,H.P.C., Freemont,P.S. (1994). Crystal structure of the DNA modifying enzyme β -glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. *EMBO J.* **13**, 3413-3422.

Waldron,C., Matsushima,P., Rosteck,P.R. Jr., Broughton,M.C., Turner,J., Madduri,K., Crawford,K.P., Merlo,D.J. und Baltz,R.H. (2001). Cloning and analysis of the spinosad biosynthetic gene cluster of *Saccharopolyspora spinosa. Chem. Biol.* **8** (5), 487-499.

Walker, J.E., Saraste, M., Runswick, M. J. und Gay, N.J. (1982). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. *EMBO J.* **1** (8), 945-951.

Walsh,C.T., Gehring,A.M., Weinreb,P.H., Quadri,L.E. und Flugel,R.S. (1997). Posttranslational modification of polyketide and nonribosomal peptide synthases. *Curr. Opin. Chem. Biol.* **1** (3), 309-315.

Weinberg, E, D. (1978). Secondary metabolism: regulation by phosphate and trace elements. *Folia Microbiol.* **23** (6), 496-504.

Weinstein, M.J., Wagman, G.H., Oden, E.M., Luedemann, G.M., Sloane, P., Murawski, A., Marquez, J. (1965). Purification and biological studies of everninomicin B. *Antimicrob. Agents Chemother*. (5), 821-827.

Weitnauer,G., Gaisser,S., Trefzer,A., Stockert,S., Westrich,L., Quirós,L.M., Méndez,C., Salas,J.A. und Bechthold,A. (2001a). An ATP-binding cassette transporter and two rRNA methyltransferases are involved in resistance to avilamycin in the producer organism *Streptomyces viridochromogenes* Tü57. *Antimicrob. Agents Chemother.* **45** (3), 690-695.

Weitnauer,G., Hauser,G., Hofmann,C., Linder,U., Boll,R., Pelz,K., Glaser,S.J. und Bechthold,A. (2004). Novel avilamycin derivatives with improved polarity generated by targeted gene disruption. *Chem. Biol.* **11** (10), 1403-1411.

Weitnauer,G., Mühlenweg,A., Trefzer,A., Hoffmeister,D., Süssmuth,R.D., Jung,G., Welzel,K., Vente,A., Girreser,U. und Bechthold,A. (2001b). Biosynthesis of the orthosomycin antibiotic avilamycin A: deductions from the molecular analysis of the avi biosynthetic gene cluster of *Streptomyces viridochromogenes* Tü57 and production of new antibiotics. *Chem. Biol.* **8** (6), 569-581.

Westrich,L., Domann,S., Faust,B., Bedford,D., Hopwood,D.A. und Bechthold,A. (1999). Cloning and characterization of a gene cluster from *Streptomyces cyanogenus* S136 probably involved in landomycin biosynthesis. *FEMS Microbiol. Lett.* **170** (2), 381-387.

Weymouth-Wilson,A.C. (1997). The role of carbohydrates in biologically active natural products. *Nat. Prod. Rep.* **14** (2), 99-110.

Wietzorrek, A. und Bibb, M. (1997). A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. *Mol. Microbiol.* **25** (6), 1181-1184.

White, O. und andere (1999). Genome sequence of the radioresistant bacterium *Deinococcus radiodurans* R1. *Science* **286** (5444), 1571-1577.

Wright, F. und Bibb, M.J. (1992). Codon usage in the G+C-rich Streptomyces genome. Gene 113 (1), 55-65.

Xuan,L.J., Xu,S.H., Zhang,H.L., Xu,Y.M. und Chen,M.Q. (1992). Dutomycin, a new anthracycline antibiotic from *Streptomyces. J. Antibiot.* **45** (12), 1974-1976.

Yadav,G., Gokhale,R.S. und Mohanty,D. (2003). SEARCHPKS: A program for detection and analysis of polyketide synthase domains. *Nucleic Acids Res.* **31** (13), 3654-3658.

Yalpani,N., Altier,D.J., Barbour,E., Cigan,A.L. und Scelonge,C.J. (2001). Production of 6-methylsalicylic acid by expression of a fungal polyketide synthase activates disease resistance in tobacco. *Plant Cell* **13** (6), 1401-1410.

Yanisch-Perron, C., Vieira, J. und Messing, J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. *Gene* **33** (1), 103-119.

Yoshida,K., Yamaguchi,M., Ikeda,H., Omae,K., Tsurusaki,K. und Fujita,Y. (2004). The fifth gene of the *iol* operon of *Bacillus subtilis*, *iolE*, encodes 2-keto-*myo*-inositol dehydratase. *Microbiology* **150** (3), 571-580.

Yoshida,K.I., Aoyama,D., Ishio,I., Shibayama,T. und Fujita,Y. (1997). Organization and transcription of the *myo*-inositol operon, *iol*, of *Bacillus subtilis*. J. Bacteriol. **179** (14), 4591-4598.

Young,L. und Dong,Q. (2004). Two-step total gene synthesis method. Nucleic Acids Res. 32 (7), e59

Zachara, N.E. und Hart, G.W. (2002). The emerging significance of O-GlcNAc in cellular regulation. *Chem. Rev.* **102** (2), 431-438.

Zechel, D.L. und Withers, S.G. (2000). Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc. Chem. Res. 33 (1), 11-18.

Zhou, P., Florova, G. und Reynolds, K.A. (1999). Polyketide synthase acyl carrier protein (ACP) as a substrate and a catalyst for malonyl ACP biosynthesis. *Chem. Biol.* 6 (8), 577-584.

6 Anhang

6.1 Abkürzungsverzeichnis

Nicht angegeben sind die Abkürzungen der Restriktionsendonukleasen, der geläufigen Einheiten und abgeleiteten Einheiten des *Système Internationale d'Unités* sowie der Elemente des Periodensystems.

Abkürzungen für Nukleobasen

Α	Adenin	K	Guanin oder Thymin
В	Cytosin, Guanin oder Thymin	М	Adenin oder Cytosin
С	Cytosin	Ν	jede Base
D	Adenin, Guanin oder Thymin	R	Adenin oder Guanin
G	Guanin	S	Cytosin oder Guanin
Н	Adenin, Cytosin oder Thymin	Т	Thymin

- U Uracil
- V Adenin, Cytosin oder Guanin
- W Adenin oder Thymin
- Y Cytosin oder Thymin

Abkürzungen für Aminosäuren

А	Ala	Alanin	I	lle	Isoleucin	R	Arg	Arginin
С	Cys	Cystein	К	Lys	Lysin	S	Ser	Serin
D	Asp	Asparaginsäure	L	Leu	Leucin	Т	Thr	Threonin
Е	Glu	Glutaminsäure	Μ	Met	Methionin	V	Val	Valin
F	Phe	Phenylalanin	Ν	Asn	Asparagin	W	Trp	Tryptophan
G	Gly	Glycin	Ρ	Pro	Prolin	Υ	Tyr	Tyrosin
н	His	Histidin	Q	Gln	Glutamin			

Abkürzungen

6-MSAS	6-Methylsalicylsäuresynthase	bla	β -Lactamasegen (Resistenzgen)
<i>aac</i> (3)IV	(3')-N-Aminoglykosidacetyltransferase	bp	Basenpaar(e)
AB	Antibiotikum/Antibiotika	BSA	Rinderserumalbumin (bovine serum albumin)
Abb.	Abbildung	cam ^R	Chloramphenicol-Resistenz
ABC	ATP-Bindungskassette	cDNA	komplementäre Desoxyribonukleinsäure
	(ATP binding cassette)	CIAP	alkalische Phosphatase aus Rinderdarm
ACN	Acetonitril		(calf intestinal alkaline phosphatase)
ACP	Acyl-Carrier-Protein	CoA	Coenzym A
AK	Arbeitskreis	CYC	Cyclase
amu	atomare Masseneinheit = Da	Da	Dalton
	(atomic mass unit)	DAD	Diodenarraydetektor
AP	alkalische Phosphatase	DC	Dünnschichtchromatographie
APS	Ammoniumpersulfat	dCTP	Desoxycytidin-5'-triphosphat
ARO	Aromatase	DH	Dehydratase
AS	Aminosäure(n)	DIG	Digoxigenin
AT	Acyltransferase	DMSO	Dimethylsulfoxid
ATP	Adenosin-5'-triphosphat	DNA	Desoxyribonukleinsäure
attP	phage attachment site	DNase	Desoxyribonuklease
Avi	Avilamycin	dNDP	Desoxynukleosiddiphosphat(e)
B. subtilis	Bacillus subtilis	dNTP	Desoxynukleosidtriphosphat(e)
BC	Biotin-Carboxylase	dsDNA	doppelsträngige DNA (double stranded)
BCCP	Biotin-Carboxylase-Carrier-Protein	dTDP	Desoxythymidin-5'-diphosphat
bidest.	zweifach destilliert		

E. coli	Escherichia coli	PDA	Photodioden-Array
EDTA	Ethylendiamintetraessigsäure	PEG	Polyethylenglykol
ER	Enoylreduktase	PKS	Polyketidsynthase(n)
ermE	Erythromycin-Resistenzgen aus	Pok	Polyketomycin
	Saccharopolyspora erythraea	PPTase	Phosphopantetheinyltransferase
ESI	Elektrospray-Ionisierung	psig	pounds-force per square inch gauge
et al.	und andere (<i>et alii</i>)	RBS	Ribosomenbindestelle
EtBr	Ethidiumbromid	Rf	Retentionsfaktor
EtOH	Ethanol	RNA	Ribonukleinsäure
FAD	Flavin-Adenin-Dinukleotid	RNase	Ribonuklease
Glc	Glucose	rpm	Umdrehungen pro Minute (rounds per minute)
Glc-1-P	Glucose-1-phosphat	rRNA	ribosomale Ribonukleinsäure
GT	Glykosyltransferase	RT	Raumtemperatur
HPLC	Hochleistungsflüssigkeitschromatographie	S.	Streptomyces
	(high performance liquid chromatography)	SAM	S-Adenosyl-L-Methionin
IMP	Inosinmonophosphat	SARP	Streptomyces antibiotic regulatory protein(s)
Int	Integrase	SDS	Natriumdodecvlsulfat
IPTG	Isopropyl-1-thio-β-D-galactosid	SD.	Spezies (sq.)
kmr	Kanamycin-Resistenzgen	SDD.	Spezies (pl.)
kb	Kilobasenpaar€ (= 1000 bp)	subsp.	Subspezies (sg.)
KR	Ketoreduktase	ssDNA	einzelsträngige DNA (single stranded)
KS	β-Ketoacyl-Synthase	Tab.	Tabelle
LB	Luria-Bertani	TAE	Tris-Acetat-EDTA-Puffer
LC	Flüssigchromatographie	tcr	Tetracyclin-Resistenzgen
	(liquid chromatography)	TE	Tris-EDTA
m/z	Masse zu Ladung	TEMED	N N N N ´N´-Tetramethylethylendiamin
М.	Micromonospora	TES	N-Tris-(hydroxymethyl)-methyl-2-
MHK	minimale Hemmkonzentration	120	aminoethansulfonsäure
MOPS	3-(N-Morpholino)propansulfonsäure	TMD	Transmembran-Domäne
MS	Massenspektrometrie	Tris	Tris-(hydroxymethyl)-aminomethan
MSAS	6-Methylsalicylsäure-Synthase	tRNA	Transfer-Ribonukleinsäure
MSD	Massendetektor	tsr	Thiostrepton-Resistenzgen
MT	Methyltransferase	U	Unit(s) = Maßeinheit für die Enzymaktivität
MW	relative Molmasse, Molekulargewicht	ÜN	Übernacht-
NBD	Nukleotid-bindende Domäne	UDP	Uridin-5'-diphosphat
nt	Nukleotid(e)	Urd	Urdamycin
NTA	Nitriltriessigsäure (nitrilotriacetic acid)	UV	Ultraviolett
OD	optische Dichte	Vol.	Volumenteil
ORF	offene(r) Leserahmen (open reading frame(s))	v/v	Volumen/Volumen
<i>ori</i> R	Replikationsursprung (origin of replication)	w/v	Gewicht/Volumen
oriT	Transferursprung (origin of transfer)	WT	Wildtyp
OXY	Oxygenase	X-Gal	5-Brom-4-chlor-3-indolvl-ß-D-
PAGE	Polyacrylamid-Gelelektrophorese		galactopyranosid
PCR	Polymerase-Kettenreaktion (polymerase chain reaction)		

6.2 Übersichtskarte des Polyketomycin-Clusters

Abb. 6.1: Physikalische Karte der sequenzierten Bereiche aus den Cosmiden CB30-6D20, CB30-4E08 und CB30-2A21. Neben der 52,1 kb-Sequenz mit 41 vollständigen ORFs ist im oberen Teil der Abbildung ein 6,9 kb-Abschnitt mit fünf vollständigen ORFs dargestellt. Die ungefähre Lage der Cosmide ist durch die farbigen Linien oberhalb der Sequenz gekennzeichnet. Die Lage der Restriktionsschnittstellen, die bei der Erstellung von Subklonen von Bedeutung waren, ist ebenfalls angegeben (*B* = *Bam*HI, *N* = *Not*I, *Nco*I und *S* = *Sac*I). Um die Lage der Subklone zu verdeutlichen, sind diese jeweils unterhalb der Sequenz angegeben. Die Subklone sind in der Grafik nur mit der Nummer des Inserts bezeichnet. Die entsprechenden Plasmide sind in Tab. 3.1 aufgeführt.

6.3 Sonden-DNA-Sequenzen

Nachfolgend die Sequenzen der spezifischen Sonden, die zur Suche nach Anschlußcosmiden für das Cosmid CB30-6D20 aus *S. diastatochromogenes* Tü6028 verwendet wurden. Grau unterlegt sind die Bereiche, von denen Primer abgeleitet wurden.

Sonde für Anschlußcosmid in 5'-Richtung

CTCATGCCTC TCCGATACTC CTCGTCCGCC CGCCCGTGTC GCGGCCGGGA CCGTGTCATT CCTCGCCGAG CGCGTGCTTC GCCCAGCCGT CGGCGTTCAC GTCCGGCTGG AGCGCGGCGT GCCCGGCCAT GCAGTGCACG TCCCGCCACA CCCGCTGAAC CGGGTGGGAC AGGGCCTGGC CCCGGGCGCC GCTCATCCGC ATCAGCCCGT TCACGGAGTC GAGCAGCAGG TCCACCGCGG TCGAGTAGTC ACGCGTGACC CGCAGCGTCA GGGCCGGGGT CGGCTCCGCC TCGTCGGCCT CGGCCGCCGC GTGGTCGACG ATCAGCCGTG CCGCGTCGAG GGCGGCCGCG GCCCGGGCCA GCGTCAGGCG CACGCCGGGC CGGGACCCGG TCCGGACGCC GTTGATCTCG ACGCGGCTCG CGGTCCATCG GGTCCATGC CCGAGAGCGC CCTCGACCGC ACCGATGCCG GGGGCCACGA AGAACAGGCC GTTGATCAGCC TTGAGCG

Sonde für Anschlußcosmid in 3'-Richtung

6.4 DNA-Sequenzen aus Streptomyces diastatochromogenes Tü6028

6.4.1 Polyketomycin-Cluster-Sequenz

Die DNA-Sequenz ist größtenteils in 5'→3'-Leserichtung wiedergegeben. In Bereichen mit Genen, die auf dem Gegenstrang codiert sind, ist der Gegenstrang auch aufgeführt. Die Start-Codone **ATG**, **GTG**, **TTG** und die Stopp-Codone **TGA**, **TAG** sind hervorgehoben.

100 CCCCTCCAAG GTGGACCGTT CGGCGGCCTA CGCCATGCGG TGGGTTMCCA AGAACGTCGT CGCCGCCTCG CTCGCGCGCC GCTGGGAGGT CCAGGTCGCC TACGCGATCG GCAAGGCCGA TCCCGTCGGG CTCTTGGTGG AGACCTTCGG CACCGCGACC GTCGACCCGG AGAAGATCGA GAACGCCGTC TCGGCGGTCT 200 Stopp TCGACCTCCG GCCCGCCGCC CTCATCCGCG ACCTCGACCT GGTGCGGCCG ATCTACGCCC AGACCGCGGC CTACGGCCAC TTCGGGCGMG AGATGCCGGA 300 pokSAMS CTTCACCTGG GAGCGCACCG ACCGCGTCGA CGCGCTGCGC CGGGCCGCCG GTCTC**TGA**CC CCCACCCGCC GACCGACGGT TCAAGGAGAT CCCC**GTG**CGC 400 Start ATCGCCGTCA CCGGATCCAT CGCGACGGAC CACCTCATGG CCTTTCCCGG GCGCTTCGTC GACCAGCTCA TGAGCGAGCA CCTGGAGAAG GTGTCGCTGT 500 pokR3 CGTTCCTCGC CGACACGCTG GAGATCAGGC GCGGCGGGGT GGCCGCCAAC ATCGCCGTGG GCCTCGGCCG CCTCGGGCTC ACTCCGGTCC TGGTGGGCGC 600 700 GGCCGGCACC GACTTCGCCG AGTACCGCGA CTGGCTGCGC GCCAACGGCG TCGACACCGG GTCGGTGCGG GTGAGCGCCA CCCGGCACAC CGCCCGCTTC 800 GTGTGCACCA CCGACGCCGA CCAGAACCAG ATCGCCACCT TCTACGCCGG CGCGATGGTC GAGGCACGGG AGATCGCGCT GGCCGGCGTC GTCGAACGGG 900 CCCCTCGCAG CAACTCGCCC GACTGGGACG GGAGGAGACC CGGCGGCTCG TCGACGGGGC CCGCTTCCTG TTCACCAACG CTTACGAGGC GGCCCTGCTC 1000 1100 CAGGAACGAA CGGGCTGGAG CAGGGCCGAG GTCCTCGAAC GGGTCGGCAG CTGGCTCGTC ACCCACGGCC CCGAGGGCGT CGCCGTGCTC CGCTCCGGAC Stopp ACCCGGAGTT GCGGCTGCCC GCGGTCGAGG CGGCCGAGGT CGTGGACCCC ACCGGCGCCG GCGACGGCTT CCGCGCCGGA TTCCTGGCCG GCGCCGCACG 1200 pokR3 GGGATGGCCG CAGGAACGGG CCGCCCGGCT CGGGTGCGCC CTGGCGACCC TCGTGCTGGA GTCCCTCGGC ACCCAGGAGT ACAAGCTGTC CGCCGCCGAA 1300 Start CTGCACCTGA GGACCGAGCA GGCCTACGGG GCCGCCGCTG CCGCCGAGAT CACCCACGAC CTGGAGAGGC GATGACGATC AAAGAGTGCC GCATCTGCGG 1400 pokS8 1500 CAACCGCACC CTGCTGCCGA TACTCGACCT GGGCGAACAG GCCCTCACCG GCATCTTCCC CCGCACCCGC GACGAGGTGG TCCCCTCCGT ACCCCTCGAA 1600 CTCGTGCGCT GCTCACCGGA CGGCTGCGGA CTCGTCCAAC TGCGGCACAC CGCCGACTTC GGGCTGATGT ACGGCGAGGG CTACGGATAC CGGTCCGGAC 1700 TCGGTGAGTT CATGATCCGG CACCTCGCGG GCAAGGCCGC CCTGCTCACC GACCTGGTGC GCCCGGGCCC CGACGACCTC GTCCTGGACA TCGGCAGCAA 1800 CGACTCCACC CTCCTGCGGG CCTACCCCGC GGACGGACCC ACCCTGGTCG GCATCGACCC GACCGGAGAG AACTTCCGCG AGTACTATCC CGAACACGTC 1900 AGGCTCGTTC CCGAGTTCTT CTCCCGCGAG GTCTTCACCG GGCACTTCGG CCGGCGCAAG GCCAAGATCG TCACCTCGAT CGCGATGTTC TACGACCTGC 2000 CGCGCCCCCT CGACTTCATG CGGGACGTCC ACGACATCCT CGACGACGAC GGGGTGTGGC TGCTGGAACA AGAGCTACAA TGCCCGCGAT TGNTCGAAAG 2100 CCCACCCGCG TACGACGTTG TTGTGCCCAC GAAGCACCTG GAGTACTACG CGCTGCGGCC AGATTCGAGT GGATGGCGGG CGCGCACCGG ACTGAGCGTC ATCCGGGCGG AGCTTAAACT TCCGTGTACG GCGGCAAGCC TCTGCGTCGT GCTCGCCAAG AACCCCGCAC GCCACCACGT CGACGAGGCC GGGATCGCCG 2200 2300 CGGTCCGCGC CCACGAGGCA CAGCTGGGTC TGGACACCAT GGCCCCCTTC GAGGCCTTCG CCCACCGGGC GGCCGAGTAC CGCGACGGGC TGCGCGCCCTT 2400 CCTCGACACC TCCCGCGAGG CCGGCCGGCT GACCCTCGGG TACGGCGCGT CGACCAAGGG CAACGTCATC CTCCAGTACT GCGGCATCAC CGAACGCGAC 2500 CTGCCCTGCA TCGGCGAGGT CAACAAGGAC AAGGACGGCT GCTTCACCCC CGGCACCGGC ATTCCCGTCG TCACCGAGTC CGAGGCCAAG TCCCGGCGGC 2600 CCGACCAGCT GCTCGTGCTG CCCTGGATCT ACCGGGACGG CTTCGTCGAA CGGGAGCGTG CGTACCGCGA GAGCGGCGGC AAGCTGGTCT TCCCGCTACC Stopp CGAACTCAGC ATCGTGTAGC CCCCGTTGAC CGGGATCCGA TGCACCACAT TTGATCAGCG GTTGGGGTTC GGGCGCGGCC GCTGCGGCAC AATGAGGGCCA 2700 pokS8

Start	TG CCCACCGG	TGCTGCCATC	CGCATCCTCG	GACCGCTGCG	CGTACGCACG	GCGGACGGCG	GGACGGCCGA	CGTGCGCGGG	GCGCGGCTGC	AGACACTGGT	2800
pokR1	CGCGGTCCTC	GCGCTGGCGG	CGGGCAGGGA	AGTGGCGCGC	TCCGACCTCC	TCGAAGCGCT	CTGGGACGAC	GCCCTGCCGT	CCGCTCCGGA	CAACGCGCTC	2900
Г	CAGGCCCTGA	CCTCCCGGAT	GCGGCGCGCC	CTGCCCGGGC	TCGTCGTCGA	CTCCAGCCCC	ACCGGCTACC	GGCTCGTCGT	ACGGCGGGAC	GACGTCGACG	3000
	CGCTCCGCTT	CGAGTCGCAG	GTGTCGGCCG	TCGCCGCGGT	GCGGGGCGAC	CACGCGCGGC	GCGCCGCCGT	GCTGCGGGAC	GCCCTCGACC	TGTGGCACGG	3100
	CCCCGCCCTG	GCGGGACTCA	CCTCCACCCG	GGTGGTGCGC	GCCCACGCGA	CACGGCTCGA	AGAGCTCCGC	CGCCGCGCCC	GCGAGGACCG	GATCGACGCC	3200
	GAACTCGCCC	TGGGCGGCGG	GCCCGCGCTC	GTCGCCGAAC	TGGCGGGCCT	GGTCTCCGAG	GACCCGTTCC	GCGAGAAGCT	GCGCGTCCAG	CTCATGCACG	3300
	CCCTGCAGAC	CGACGGCCGA	CAGACCGAGG	CGCTGGGCGT	GTACACGGAG	GCGAGAACCC	TGCTCGCCGA	GACGTACGGG	ATCGACCCCT	CGGCGGAACT	3400
	CCATCAGGCG	TACCTCGACG	TCCTGCGCGG	CGAAGTCACC	GCGGCACCGC	CCCGACTCGC	GCCGCGCGAG	ACACGGCTGC	CGGTCCCGCT	CACCGAACTC	3500
	GTCGGCAGGG	AGGCCGACGT	GGAGCGGGTG	CGGGAACTGC	TCGACCACGC	CCGGCTGGTG	ACCGTCGTCG	GCCCCGGCGG	CGTGGGCAAG	ACCCGGGTGG	3600
	CCCTCGAAGC	GGCCCGACGC	GTCGACGAGC	GCGGCACCCA	GCGCGTCGTT	CTCGTCGAAC	TCGCCTCGGT	CGCCGACCCG	GCCAACGTGC	CGCGTACCGT	3700
	CCTCGACACC	CTCGGCGCGG	GCGAGGGCGG	ACTGCTGTCC	GCGCCGGGAT	TCGAGACACC	CGAGCACGGG	ССССТССТСС	GCCGCCTCAT	GAGCCTGCTG	3800
	GCGGGCGAAC	CGGCCCTGCT	CGTCCTCGAC	AACTGCGAAC	ACCTCGTGGA	AGCCGTCGCG	GAGACCGCCG	CGACCCTGCT	CGCCCACTGC	CCCGACCTGT	3900
	GCGTCCTCGC	CGCCGGCAGA	CAGCCGTTGG	GGGTCAGCGG	CGAACGGCTG	CACCGGCTCA	CCGGTCTCGC	CCTGCCCAAG	GGGCCCACGG	ACGCGCCGGG	4000
	CTCGCCCGCG	GTGCGCCTCT	TCGCCGACCG	CGCCCTCGCC	GTCCGCCCCG	CGTTCACCCT	CGACGGGCGC	ACGGTGGACA	CGGTGGTCGC	GATCTGCCGC	4100
	GCCCTCGACG	GGCTGCCGTT	GGCCCTCGAA	CTCGCCGCCG	CCCGGCTGCA	GTCGCTGTCC	GCCGAGCAGA	TACGCGACCG	GCTCGACGAC	CGGTTCCGGC	4200
	TGCTGGGCGC	CGAGGGCCGG	CCGGCCGACG	GGCGGCGCCG	CACCCTGCGG	GCCGTGATGG	ACTGGACCTG	GGACCTGCTG	GACGACGCCG	AGCGCACCCT	4300
	CGCCCGGCGC	CTCGCCGTGT	TCGCGGGCCG	CGTCGACCTC	CCGCTCGTCG	AGCGGGTGTG	CGCGGGCGAC	GGACTCGACC	CCGCCGACCT	CGACATGCTG	4400
	СТССССТССС	TCGTCGCCAA	GTCCGTCGTG	CAGACGGAGG	AGACCGGCCG	GCGGGTCGGC	TACCGCATGC	CCGAGACCGT	ACGGCTCTAC	GCCGCCGAGC	4500
	AACTCGCCGC	GGCAGGGGAC	GAGGCACCGC	TGCGCACGCG	CCACGCCCGG	ACCCTCCTCG	CGATCGCCGA	GACCGCCGAA	CCGGGGCTCC	GCCGCCACGG	4600
	CCAGGCCGCC	GAACTCGCCC	GGTTGAGCGC	TCTGGTGGAC	GACTTCCACG	CCGCCCTGCG	СТССТССТС	GACCATGCTC	CCGACGGGCT	CGCGCTGCGC	4700
	СТССТССССТ	CGCTGGAGTG	GTTCTGGCTG	CTCGGCGGGC	GCCGCGCGGA	GGCCATGGAA	TGGACACGCC	GCGCACTCGA	CCTGCCGTGC	GACAGCCGGC	4800
	CCCGGGACCG	GGCGATCGTC	TGCGCCGTCG	GGGGACTTCA	GCACGGGGCA	CTGCTCGGCG	AGGAAGCAGG	CGTCGCCTAC	CTCTTCGAGG	CGCTGGCGCT	4900
	GATCCAGGAG	CTCCCGGAAG	CCGACCACCC	GGTGCTCGTG	GCCGCAGGCA	TCCTCGGCTC	ACTCGCCTCC	GGCTCCCCTG	AGCTCGTGAG	CGAACAACTG	5000
	CGTGCGCTCG	GCGGCCACCG	CGACCCCTGG	ATCGCCTCCC	TCGCCCGGAT	GCTGGGGGCC	CGCATGCTCG	CCAACGCCGG	ACAGCCGCAC	GCGGCACGGG	5100
	ACGAACTCCT	CGCCGCCCTC	GACGGGTTCC	GGACCCTCGG	CGAGCGCCTC	GGCCTGACCT	ACACGCTCTC	CGCGCTCGCC	GAGTCCGAGA	GCGCCCGGGG	5200
	CGACCACGTG	GGCGCGATCG	GCGCGCTGGA	GGAGGCGCTG	CGCGCCGTGA	CCGAACTGGG	CCACGCCGAG	GACCGGCCCA	TGCTCATGGT	GCGCCTGGCG	5300
	GTCGAGCAGG	CCAGGTCGGG	CCGCCCCGAA	GCGGCGGAGG	CCGGACTGCT	GGACGCGGCG	GCCGAGGCGT	CCCGGTTGGG	CCTCGGCGAG	ACCCTGGGCG	5400
	TCGCCCACCA	CGCGCTCGGC	GACCTGCGCC	GTACGCAGGG	CCGGACGGCC	GAGGCACGCA	GGCTGCTCGA	CCGGGCCCTC	GCCGAGGTCA	TGGCACACGG	5500
	CCCCGGCGTC	GGCTATCGCC	CTGCAGTCCT	CACCAGCCAG	GGCCACCTCG	CCGTCGCCGA	GAGCCGCCTC	CCCGCGGCGC	TGGAGGCCTG	CACGGCGGCG	5600
▼	CTGGACCTCG	CCCGGCAGGT	CGACGAGGCA	CAACTGCTGG	CCCAGGTCCT	GGTGCTGGCC	GCGGACATCG	CCCTCGCCCA	GGCCGAACCC	AAGCACGCGG	5700
Stopp	CGGTCCTCCT	GCACACCGCC	GCGGACGTCC	GCGGCCAGCC	GCTCGATGCC	GACCCGGACG	TCCACCGGGT	GGCGCGGGCG	ACCCGGCTGG	CCCTCGGGGA	5800
pokR1	CGACCGGTAC	GGGGCCGCGC	GCCCCGTACG	CCCCGACGAG	ATCGAGGGCC	TGGTCGCGGG	CCTCGCCGGC	CGGCTGGCGC	CACCGCAGGC	CGGG <u>TGA</u> CCT	5900
-											

Stopp		GCGCGGCCGG CGCGCCGGCC	CCGTCCACGG GGCAGGTGCC	GGACAGCCGG CCTGTCGGCC	CCGCGCGGGT GGCGCGCCC <u>A</u>	CAGCGGCCCA <u>GT</u> CGCCGGGT	CAGGAGCCGC GTCCTCGGCG	CGCCAGCTCC GCGGTCGAGG	GCGAGCAACG CGCTCGTTGC	GCACCACGTC CGTGGTGCAG	GCTCGGCGCC CGAGCCGCGG	6000
A		GGGAGCCGCC CCCTCGGCGG	TGATCTCGTC ACTAGAGCAG	GGCCAGCGAC CCGGTCGCTG	TCGGCGGCGG AGCCGCCGCC	AGCGGTAACC TCGCCATTGG	GGGAGCGGAG CCCTCGCCTC	AGCACCGACT TCGTGGCTGA	CCACCGTCGC GGTGGCAGCG	CCGCAGCCCC GGCGTCGGGG	GCCGAAGAGT CGGCTTCTCA	6100
		CCGCACTCAT GGCGTGAGTA	AGCCGCGTCG TCGGCGCAGC	AGGTCGAGGA TCCAGCTCCT	CCACGCCTGC GGTGCGGACG	CCCGCGCGCCC GGGCGCGCGG	GCGACGCGCT CGCTGCGCGA	CGCCGACCGC GCGGCTGGCG	CGCCCACGAA GCGGGTGCTT	GGGTTCGACT CCCAAGCTGA	GGGCGAGGAC CCCGCTCCTG	6200
		CAGCTGCGGC GTCGACGCCG	ACCCCGAAGG TGGGGCTTCC	CCAGACCGGT GGTCTGGCCA	CAGGGCCGTC GTCCCGGCAG	CCCGCGCCGC GGGCGCGGCG	CGTGATGCAG GCACTACGTC	CAGCGCGTCG GTCGCGCAGC	CAGTCACCGA GTCAGTGGCT	GGAACAGGTC CCTTGTCCAG	CAGCGGAACC GTCGCCTTGG	6300
		GCGCCCGGCG CGCGGGCCGC	CGTGCACAGA GCACGTGTCT	GGCGGGCAGA CCGCCCGTCT	CCGGCCGCGT GGCCGGCGCA	CGTGCGGGAC GCACGCCCTG	CGCGGTGACG GCGCCACTGC	ACCGACTCCA TGGCTGAGGT	TGTCCCGCAC ACAGGGCGTG	GGCGGCGAGC CCGCCGCTCG	TCACGGATCA AGTGCCTAGT	6400
		GCGCGTCCCA CGCGCAGGGT	GATCTCCGGC CTAGAGGCCG	CGCGTCAGCA GCGCAGTCGT	TCGGGGTCTC AGCCCCAGAG	GCCGCCGAAG CGGCGGCTTC	CTGACGCACA GACTGCGTGT	GGCGCCTGCC CCGCGGACGG	CGCGTCCGGC GCGCAGGCCG	CGCGGCGCCC GCGCCGCGGG	AACGAGGCGG TTGCTCCGCC	6500
		TGAACCCGCC ACTTGGGCGG	CCGTTGAAGG GGCAACTTCC	GCACGAAGCG CGTGCTTCGC	CACCGGCTGG GTGGCCGACC	GCCGCCGAGG CGGCGGCTCC	CCTCCGGGCA GGAGGCCCGT	CTGCAGACTC GACGTCTGAG	GGCGGGCACG CCGCCCGTGC	GGTCCAGCAC CCAGGTCGTG	CAGCGAGGGC GTCGCTCCCG	6600
		AGCGCCGGAC TCGCGGCCTG	CCGAGTCCAC GGCTCAGGTG	ACCGCGCCGG TGGCGCGGCC	GCGGCCACCT CGCCGGTGGA	CGCCGAGCGC GCGGCTCGCG	CTCGACGGCC GAGCTGCCGG	CGCGGAACGG GCGCCTTGCC	ACTGGGAGCT TGACCCTCGA	GATCCGGTCC CTAGGCCAGG	GGCCCCCAGC CCGGGGGTCG	6700
		GGTGCAGCAC CCACGTCGTG	GGCCGGCACC CCGGCCGTGG	CGCAGGGCGG GCGTCCCGCC	CCGCCACGAT GGCGGTGCTA	CAGACCGCTG GTCTGGCGAC	AACTCGATCG TTGAGCTAGC	GATCCACCAG CTAGGTGGTC	CACCAGATCC GTGGTCTAGG	GGCCGCCACC CCGGCGGTGG	GGCGGGCGAC CCGCCCGCTG	6800
		GTCCAGATGC CAGGTCTACG	TCGTCGAGCA AGCAGCTCGT	CGCCGTCGAC GCGGCAGCTG	GCGCTGTCGC CGCGACAGCG	CACCTCTCCT GTGGAGAGGA	GGAGCAGCGC CCTCGTCGCG	CCAGTCCGGA GGTCAGGCCT		GCAGCCCTGA CGTCGGGACT	GGGCGCCGCC CCCGCGGCGG	6900
		GACCGCCGTA CTGGCGGCAT		CGGTGGCTCG GCCACCGAGC	CTCACCACGG GAGTGGTGCC	CGCCCGACAG GCGGGCTGTC	ACCGGCCGCC TGGCCGGCGG	GCGGCGCGCT CGCCGCGCGA	CCACCACGGG GGTGGTGCCC	AGCGCCGCCG TCGCGGCGGC	GCGACCAGGA CGCTGGTCCT	7000
Start pokGT2	01	CCTCGTGCCC GGAGCACGGG	GGCCGACCGC CCGGCTGGCG	AGGGCCCAGG TCCCGGGTCC	CGACCGGGAC GCTGGCCCTG	CATCGACATC GTAGCTGTAG	AGATGACTCG TCTACTGAGC	GTACCAGGGC CATGGTCCCG	GACGACCAGC CTGCTGGTCG	ACCCTCATCC TGGGA <mark>GTA</mark> GG	CTGAACCTCC GACTTGGAGG	7100
	pokABC2	TTACCGTTCA <u>AAT</u> GGCAAGT	CGGTGGTAGG GCCACCATCC	CGCGCAGGGC GCGCGTCCCG	CAGCGGGGGCG GTCGCCCCGC	AAGACCACGA TTCTGGTGCT	GGAGGACCGC CCTCCTGGCG	CGCGGCGATC GCGCCGCTAG	AGCGTCTTCG TCGCAGAAGC	TCACGGGCTG AGTGCCCGAC	CCCCACCGGA GGGGTGGCCT	7200
		CCGCCGACCA GGCGGCTGGT	GGAGACCGCG CCTCTGGCGC	GATCGAATCG CTAGCTTAGC	GCCAGCATGG CGGTCGTACC	TCACCGGGTT AGTGGCCCAA	GAGCTTGACG CTCGAACTGC	ACCGCCTGGA TGGCGGACCT	GCCAGCCCGG CGGTCGGGCC	CATGGTCTCC GTACCAGAGG	ACCCGCACGA TGGGCGTGCT	7300
		AGGCGTCACT TCCGCAGTGA	GATGAACGTC CTACTTGCAG	AGCGGCAGCA TCGCCGTCGT	TGAGCCCGAA ACTCGGGCTT	GGCCAGGGCC CCGGTCCCGG	TGCACGCTCT ACGTGCGAGA	CCGGGTCCTT GGCCCAGGAA	GGAGAGCAGC CCTCTCGTCG	CCGGCCAGCA GGCCGGTCGT	CCGAGGCCCA GGCTCCGGGT	7400
		GGACAGCGCG CCTGTCGCGC	AACGAGAACG TTGCTCTTGC	CCAGGAGCAG GGTCCTCGTC	CAGGAACATC GTCCTTGTAG	GGGATCAGCT CCCTAGTCGA	GACCCCAGTT CTGGGGTCAA	GGTCTCGATC CCAGAGCTAG	CGGAAACCCA GCCTTTGGGT	GCAGCATGCC CGTCGTACGG	GAAGGCGAGC CTTCCGCTCG	7500
		AGCAGCACCA TCGTCGTGGT	CGGACCAGAC GCCTGGTCTG	CAGCATCACG GTCGTAGTGC	TAGTCCGCCA ATCAGGCGGT	GGATCCTGCC CCTAGGACGG	GATGAGCGGT CTACTCGCCA	GCCGTACGCG CGGCATGCGC	AGATCGGCAG TCTAGCCGTC	GCTGCGGAAG CGACGCCTTC	CGGTCGAAGA GCCAGCTTCT	7600

Anhang

126

		GACCCTTGGT	GACATCGGTG	TTCATCCCGA	TGGCCGTGCG	CGCGGTGACC	AGGACGGTGC	TCTGCACGAT	CAGCCCCGGG	ACGACGAACT	GCAGATAGGC	7700
		CTGGGAACCA	CTGTAGCCAC	AAGTAGGGCT	ACCGGCACGC	GCGCCACTGG	TCCTGCCACG	AGACGTGCTA	GTCGGGGCCC	TGCTGCTTGA	CGTCTATCCG	
		CTCACGCGAG GAGTGCGCTC	CCGGCCATCT GGCCGGTAGA	GACCGGCGAG CTGGCCGCTC	CACGAAGGCG GTGCTTCCGC	AAGAGGAAGA TTCTCCTTCT	CGAAGATGAC GCTTCTACTG	CGGCTGGATG GCCGACCTAC	CCGACCTCCA GGCTGGAGGT	CCAGCGTCTC GGTCGCAGAG	CGGGCTGTGC GCCCGACACG	7800
	Start	TTGATCTGCA AACTAGACGT	CGAGCTGTCG GCTCGACAGC	CCAGGCCACC GGTCCGGTGG	GTCGCGCTCT CAGCGCGAGA	GCCGCACGGC CGGCGTGCCG	GGATCCGGGC CCTAGGCCCG	CCGCGACGCC GGCGCTGCGG	GCACCTGCGG CGTGGACGCC	CGCCTCCTCG GCGGAGGAGC	GTCGTGGTGA CAGCACCACT	7900
Stopp	pokABC2	TGGCCGTCAT ACCGGC <u>AGT</u> A	ACCGCCGCTC TGGCGGCGAG	CCGTCACTGT GGCAGTGACA	CAGCTGCTTG GTCGACGAAC	AAGACCTCGT TTCTGGAGCA	CGAGGCTCGG GCTCCGAGCC	TTCCCGCACC AAGGGCGTGG	GAGAGTTCGG CTCTCAAGCC	CGACCTCGAT GCTGGAGCTA	CCCGGCGTCG GGGCCGCAGC	8000
pokAB	C1	TCGAGCCGCC AGCTCGGCGG	GCACGATCGC CGTGCTAGCG	CGACATCGCC GCTGTAGCGG	GCCGTGTCCC CGGCACAGGG	GCACCCGCGC CGTGGGCGCG	CTTGACCACC GAACTGGTGG	CGGCCGTCGC GCCGGCAGCG	TCGTGTGCTC AGCACACGAG	GCCGATCACC CGGCTAGTGG	TCGGACACCA AGCCTGTGGT	8100
T		GCGCGGCCAC CGCGCCGGTG	CCGGTCCACC GGCCAGGTGG	TGCGCACCGT ACGCGTGGCA	CCGCGGGGACG GGCGCCCTGC	CACCTGGAGA GTGGACCTCT	GTGGGCCTGC CACCCGGACG	CGACCTCCCG GCTGGAGGGC	CTTGAGCGTC GAACTCGCAG	TCAGGGGTTC AGTCCCCAAG	CTCGAGCCAC GAGCTCGGTG	8200
		GACCGAGCCC CTGGCTCGGG	TGGTCGACGA ACCAGCTGCT	CCACGATGTC GGTGCTACAG	GTCGGCGAGC CAGCCGCTCG	TGGTCGGCCT ACCAGCCGGA	CCTCCAGGTA GGAGGTCCAT	CTGGGTCGTC GACCCAGCAG	AGCAGCACCG TCGTCGTGGC	TCACCCCGCG AGTGGGGGCGC	CCGGACCTCG GGCCTGGAGC	8300
		CCGCGGATGA GGCGCCTACT	TGTCCACAAC ACAGGTGTTG	TGGTTCGCGG ACCAAGCGCC	GCATTGGGGT CGTAACCCCA	CCAGCCCCGT GGTCGGGGGCA	GGTCGGCTCG CCAGCCGAGC	TCCAGGAAGA AGGTCCTTCT	TCACCCGCGG AGTGGGCGCC	CTCGCCCACC GAGCGGGTGG	AGGCAGGCCG TCCGTCCGGC	8400
		CCAGGTCCAG GGTCCAGGTC	CCGCCTGCGC GGCGGACGCG	ATACCGCCGG TATGGCGGCC	AGTACGTCTT TCATGCAGAA	GGCGGTGCGG CCGCCACGCC	TCCGCCGCGT AGGCGGCGCA	CGGACAGCCC GCCTGTCGGG	GAACCGTTCG CTTGGCAAGC	AGCAGGCTCA TCGTCCGAGT	GCGCCGTACC CGCGGCATGG	8500
		GCGCGCGTCG CGCGCGCAGC	GCACGGGACT CGTGCCCTGA	TGCCCAGCAG ACGGGTCGTC	CCGGCCGAGG GGCCGGCTCC	AACAGCAGGT TTGTCGTCCA	TCTCGACGCC AGAGCTGCGG	GGTGAGGCTG CCACTCCGAC	TCGTCGACCG AGCAGCTGGC	CCGCGAACTG GGCGCTTGAC	GCCGGTGAGG CGGCCACTCC	8600
		CCGATGATCT GGCTACTAGA	CGCGGACCCG GCGCCTGGGC	GTCCGGGGAC CAGGCCCCTG	TTGGTCACGT AACCAGTGCA	CGTGGCCGTG GCACCGGCAC	GATGAAGGCC CTACTTCCGG	TGTCCGGCAT ACAGGCCGTA	CGGGCCGTAG GCCCGGCATC	AAGGGTGGCG TTCCCACCGC	AGGATACGGA TCCTATGCCT	8700
		CGACCGTGGT GCTGGCACCA	CTTGCCCGCG GAACGGGCGC	CCGTTGGGGC GGCAACCCCG	CCAGCAGCCC GGTCGTCGGG	GAGCACGGTC CTCGTGCCAG	CCCGCCTCGA GGGCGGAGCT	CATCGAGGTC GTAGCTCCAG	GACGGAGGTG CTGCCTCCAC	AGCGCGGCCG TCGCGCCGGC	TCTCACCGAA AGAGTGGCTT	8800
Start pokAB	C1	GCGTTTGGCC CGCAAACCGG	AGACCACGGG TCTGGTGCCC	CCTGGATCGC GGACCTAGCG	GGATGTCACA CCTACA <mark>GTG</mark> T	GGATTCCCCT CCTAAGGGGA	TCTCTCTCCT AGAGAGAGAGA	CCCGAACCGG GGGCTTGGCC	ACGTCCCGGC TGCAGGGCCG	TCGGACGGGG AGCCTGCCCC	TCGCTTTGGA AGCGAAACCT	8900
		TGCTAGGAAC	AGGTACTTCC	ATGTCGCTGA	CACGGCGCTG	ATACGCATCC	GGGGCGAGTG	TGGGGGCCGG	TCCTGGATCG	GAGTTCCAGC	CCCGCTTGAG	9000
	Start	CCCGGCCGAC	GAAGCTGGCC	GGGACTTCAG	GCGCCGACCG	GGCGCCGCAT	GCTCCGGGCG	AGGTGAGGGC	GT ATG CGCGT	GCTGTTCACG	ACCTGGGCGG	9100
	pokGT1	CACCGGGGCA	CTTGTTCCCG	ATGGTTCCGC	TGGCGTGGGC	CTTCCAGGCC	GCCGGGCACG	ACGTCCGGGT	CGCCGGCCCG	CCCGGCTGTC	GGGACGCCGT	9200
		GACCCGAGCC	GGGCTGTGCG	CGGTCGCCGT	CGGCGACCAG	GACGCGATCG	CCGGACTGCC	CAAGCCGCCC	GAACTGGCCG	CCTGGGGCCG	CCCGGCCCGG	9300
		TGGCCACACG	GCTGGTCCGC	CCACCTCGAC	CTCCTGGACA	GCGGCCGGCG	CCGGGTGATC	CGCGCTCTGT	ACGAGAAGCA	GTGCGCGGTC	GCCGGGCTGA	9400
		TGCTGGACGA	TCTGGTCGAC	TTCGGCCGCT	GGTGGCGGCC	GGACCTGGTC	GTCCACGACG	TGCTGGCCAT	GGCCGGGCCG	GTGCTGGCCG	CCGTGCTCGG	9500
		GGTCCCCGCG	GTCGGCCACG	GCTGGGAGAT	CGGCAGCACC	CTGCACCCGC	CGACCGGCGA	CACGGACAGC	GAGCCGCTGC	CCGCCTACCT	CGGCCTGTTC	9600
		GAGCGGTTCG	GCGCCGACGT	CACGGCGCCG	GCCGGCTGGG	TCGACCCGTG	CCCTCCGTCG	СТGCGGCCCC	CGGACGGAGC	GCCCGTGCGG	CGGCTGCCCA	9700

Anhang

127

		TGCGCTGCGT	GCCGTACAAC	GGTTCGGGTC	CCCAGCCGGA	CTGGCTCGCG	CGGCCCGAGC	GCCCCCGCCG	GGTGTGCGTG	ACCGCCGGAG	TCGCGGGCGC	9800
		ACGCTATCGG	GACCCCGGCG	GCCCCGACGT	ACTCGCCCTG	ACGCTGGAGT	CGCTGGACTC	CGTCGACGCC	GAGATCGTGC	TGGCGCCGGG	CGGACCCGTC	9900
		GCGACGGACG	CCCTGCCCGG	GCATGTGCGC	GTCGCCCGGG	ACGTCCCGTT	CCGCACGCTG	CTGCCGACCT	GCGACCTGGT	GGTCCACCAC	GGCGGGGCGG	10000
		GCACCGCACT	CACCGCGGTC	GTCATGGGCG	TACCGCAGCT	CGTCGTGCCG	CCCTCCCCGA	TCTGTACGGA	GATCGGCCAC	GGCATCGCCC	GCTCCGGAGC	10100
	Stopp	GGGCGTCATG	CTGGACCGGC	TCGACAGCAC	CGAACTGCTG	CTGAAGACGG	TCACCGAGAT	GCTGGCGGAC	CCCGGTCCCT	GCCGGGAGGC	CGCCGGCCGG	10200
Start	pokGT1	GTGGCCTCGG	AGACGGCGGC	GCTGCCGTCC	CCGAGCGCCC	TGGCGGCCGG	ACTCGCGGCG	TC G<u>TGA</u>CCGC	GCCGGACGTG	AACGGCGTCG	TGACCGCGCC	10300
nokS6		GGAGCCGAAC	GGCGTTCTGA	CCGGGCCGCA	GTTGGGCGGT	GCCGCGTCCG	GACCGGGGGCC	GAACGCCGTC	GTGGTCGGCG	GCAGCGGCTT	TTTGGGGCGG	10400
		CACGTCTGCG	CCGCGCTCAC	CGCGCACGGA	GCCCGCGTCC	TGTCGGTCGC	CCGGCGCCCC	GCGCCCGGTG	TGGCGTCCGC	GCGGATCGAC	CTCGTCGGCG	10500
		GACCTCCGGC	CGCCCTCGCC	GATCTCCTCG	TCGAACACGG	CGCGACCGTC	GTCGTGAACG	CCGCCGGCGC	GGTCTGGGAC	TACGACGGGC	GGGCCCTGGA	10600
		CGAAGCCAAC	GTGACGCTCG	TGGAGCGGCT	GCGCGACGCC	GTCGCCAAGG	TGCCCCACCG	GGTCCGCCTG	GTGCAGCTCG	GCTCGGTCTT	CGAGTACGAG	10700
		ATGCCCGCGC	GGGGACGGCC	CCTGACGGAG	GAGGCGCCGA	CGGACCCGTC	GACCGCATAC	GGCAGAAGCA	AACTGAGGGG	CAGTGAGATC	GTCCTCGACG	10800
		CCACCCGGGC	GGGCCTGCTC	GACGGGGTCG	TGCTCCGCGC	GACGAGCTGT	GCGGGACCCG	GGCTGCCGCG	CTCCAGCCTG	CTGGGCCGGG	TGGCCGCCCG	10900
		GCTGCGCGAC	GCGGCGGTGC	GGGGCGAGCC	GGCGGTGGTG	ACGCTCGCGC	CCCTGACCGC	CGAACGCGAC	TACGTGGACT	GCCGCGACCT	CGCCGCCGCC	11000
•		GTGGCCGCCG	CCGCGACCCT	тсссатсатс	GGACGGACGG	TCAACATCGG	CAGCGGCACG	GCCGTCGGAG	TGCGCCGGCT	GGTGGACCTG	CTCGTCGCCG	11100
Stopp		TGAGCGGAGT	GCCCGCGACG	GTCGTCGAGG	AGGGCAACGC	CACCGGGCGC	AGCGCCGGGA	TCGACTGGCT	CGCCGTGGAC	GGCGGGCTCG	CCGCGCGACT	11200
pokS6	Start	GCTCGGGTGG	CACCCGCGGC	ACAGCCTGGC	CTCGACGGTG	CGGGCGATGT	GGAGCGAGGT	CATCACCAAC	GCCGAGGAAG	GGCCTGAC <u>TG</u>	<u>A</u> GCCG ATG GA	11300
	nok\$5	CATACGCAGC	GCACTGCTGG	AACTGACCCG	GAAATTCCAC	CAGGAGCAGA	CCGAGGACAG	CTTCGTCCCC	GGACAGACGG	CGATCCTCAC	CTCGGGCGCG	11400
		GTGCTGGACG	AGGAGGACCG	GGTCGCCTTC	GTCGAAGCGG	CCCTGGACAT	GACGATCGCC	GCCGGAGCGC	GGGCCCGGAC	CTTCGAGAGC	CGGTTCGCCC	11500
		GCGCGATGAA	GGCGCGCAAG	GCACATCTCA	CCAACTCCGG	TTCCTCGGCC	AACCTCCTCG	CGCTCAGCGC	CCTCACCTCG	CCGCAGCTGG	AGGATGCCCG	11600
		GCTGGTCCCC	GGCGACGAGG	TGATCACGGT	CGCGACGGGC	TTCCCCACGA	CCGTCAACCC	GGTGCTGCAG	AACGGCCTCG	TACCGGTCTT	CGTCGACATC	11700
		GAACTCGGCA	CGTACAACAC	GACGCTGGAG	CGCGTCGAGG	AGGCCATCGG	GCCGCGGACC	CGCGCCATCA	TGGTCGCGCA	CGCGCTCGGC	AACCCCTTCC	11800
		CGGCGGCCGA	GATCGCCGAA	СТССССТССС	GGCACGGCCT	GTTCCTCGTC	GAGGACAACT	GCGACGCCGT	CGGCTCGCTC	TACCAGGGCC	GGCTCACCGG	11900
		CACCTTCGGC	GACCTGTCCA	CCGTCAGCTT	CTATCCCGCC	CACCACCTCA	CGATGGGGGA	GGGCGGCTGC	GTACTGACCG	GGAATCTGGC	GCTCGCGCGG	12000
		ATCGTCGAGT	CGATGCGGGA	CTGGGGACGC	GACTGCTGGT	GCGAACCGGG	CGAGGACAAC	CGCTGCCTGC	GCCGCTTCGA	CTACAGCTTC	GGCACGCTCC	12100
		CGCAGGGATA	CGACCACAAG	TACGTGTTCT	CGCACGTCGG	CTACAACCTC	AAGACGACGG	ACGTCCAGGC	GGCCCTCGGC	CTGAGCCAGC	TGCGCCGCCT	12200
	_	GGAGGAGTTC	GGCGCGGCAC	GGCGGCGCAA	CTGGCAGCGC	CTGCGCGACG	GGCTCCAGGA	CGTCCCCGGG	стостостос	CCGAGGCGAC	GCCCGGCAGC	12300
	•	GATCCCAGCT	GGTTCGGCTT	CGTCCTCACC	GTCCTGCCCG	ACGCCCCTT	CACCCGCACC	GCCCTGGTGT	CCTTCCTGGA	GGACCGCAAG	ATCCGCACCC	12400
	Stopp	GGAGGCTGTT	CGCGGGCAAC	CTCACCCGGC	ATCCCGCTTA	CGAGGGACGG	CACTTCCGGG	TGGTGGGGGA	GCTGACCAAC	AGCGACGTCA	CCACCGAGGC	12500
	pokS5	GACGTTCTGG	ATCGGCGTCT	ACCCCGGCAT	CACCCCGGAG	ATGGTGGACT	ACATGGTCGC	CTCGATACGC	GAGTTCGTGG	CGGCGGCGTC	C <u>TGA</u> CCGGGC	12600
Stopp		GGGCCTGACA	CAACGAGGAG	ACCTCGTGCC	тстссбтбтс	тсстсбтссб	сссбсссбтб	TCGCGGCCGG	GACCGTGTCA	ттсстсбссб	AGCGCGTGCT	12700
pokU2		CCCGGACTGT	GTTGCTCCTC	TGGAGCACGG	AGAGGCACAG	AGGAGCAGGC	GGGCGGGCAC	AGCGCCGGCC	CTGGCAC <u>AGT</u>	AAGGAGCGGC	TCGCGCACGA	
		TCGCCCAGCC AGCGGGTCGG	GTCGGCGTTC CAGCCGCAAG	ACGTCCGGCT TGCAGGCCGA	GGAGCGCGGC CCTCGCGCCG	GTGCCCGGCC CACGGGCCGG	ATGCAGTGCA TACGTCACGT	CGTCCCGCCA GCAGGGCGGT	CACCCGCTGA GTGGGCGACT	ACCGGGTGGG TGGCCCACCC	ACAGGGCCTG TGTCCCGGAC	12800

GCCCCGGGCG CCGCTCATCC GCATCAGCCC GTTCACGGAG TCGAGCAGCA GGTCCACCGC GGTCGAGTAG TCACGCGTGA CCCGCAGCGT CAGGGCCGGG 12900 CGGGGGCCCGC GGCGAGTAGG CGTAGTCGGG CAAGTGCCTC AGCTCGTCGT CCAGGTGGCG CCAGCTCATC AGTGCGCACT GGGCGTCGCA GTCCCGGCCC GTCGGCTCCG CCTCGTCGGC CTCGGCCGCC GCGTGGTCGA CGATCAGCCG TGCCGCGTCG AGGGCGGCCG CGGCCCGGGC CAGCGTCAGG CGCACGCCGG 13000 CAGCCGAGGC GGAGCAGCCG GAGCCGGCGG CGCACCAGCT GCTAGTCGGC ACGGCGCAGC TCCCGCCGGC GCCGGGCCCG GTCGCAGTCC GCGTGCGGCC GCCGGGACCC GGTCCGGACG CCGTTGATCT CGACGCGGCT CGCGGTCCAT CGGGTCCATG CCCCGAGAGC GCCCTCGACC GCACCGATGC CGGGGGGCCAC 13100 CGGCCCTGGG CCAGGCCTGC GGCAACTAGA GCTGCGCCGA GCGCCAGGTA GCCCAGGTAC GGGGCTCTCG CGGGAGCTGG CGTGGCTACG GCCCCCGGTG GAAGAACAGG CCGTTGATCA GCTTGAGCGG TACGCGGTGC AGGCGCGGAG CGGAGGGGGC CGGGTCGCCG GCGAGAACCG TACGGTGCTC GAAGCTGCGG 13200 CTTCTTGTCC GGCAACTAGT CGAACTCGCC ATGCGCCACG TCCGCGCCTC GCCTCCCCCG GCCCAGCGGC CGCTCTTGGC ATGCCACGAG CTTCGACGCC TGCGCCGGCA CGAAGACGTC GTCGAGGACC ACACTGTTGC TGCCCGTGCC GCGCAGCCCC ACATTGCGCC AGGTGTCCAG CACCCGGTAG TCACGGCGCG 13300 ACGCGGCCGT GCTTCTGCAG CAGCTCCTGG TGTGACAACG ACGGGCACGG CGCGTCGGGG TGTAACGCGG TCCACAGGTC GTGGGCCATC AGTGCCGCGC 13400 GCAGCACGAA GTGCCGCAGC GCGGGCGGAC CTTCGGGACC GCGGACCAGA CCGCCCACCA TCGTCCACTG CGCGTGGTCC ACCCCGCTGG CGAAGTCCCA CGTCGTGCTT CACGGCGTCG CGCCCGGCCTG GAAGCCCTGG CGCCTGGTCT GGCGGGTGGT AGCAGGTGAC GCGCACCAGG TGGGGCGACC GCTTCAGGGT 13500 GGTGCCGCTC AGTCGCCAGC CGCCCGGCAC CGTGTCGACC GTGCCCGACG GTGCCAGCGA TCCGGCGAGC GGTACGTCCG GCCCGTCGCC CCACAGTTCC CCACGGCGAG TCAGCGGTCG GCGGGCCGTG GCACAGCTGG CACGGGCTGC CACGGTCGCT AGGCCGCTCG CCATGCAGGC CGGGCAGCGG GGTGTCAAGG GCCTGCCCCT CCTCGGGCAG GTGCGAGCAC ATGCGGCCCA CGGCGGCGAG CACCCGGCG CACCAGGCCG CCGACATGCA TCCGGCGCCC ACCACGGACA 13600 CGGACGGGGA GGAGCCCGTC CACGCTCGTG TACGCCGGGT GCCGCCGCTC GTGGGGCCGC GTGGTCCGGC GGCTGTACGT AGGCCGCGGG TGGTGCCTGT GCGCCCGCGC GAGGTCACGC ACCGCGCCCG GGGCGGCTGC CGAACCGCCC CATCGCGGGC CCACCAGATG GCGCGCGAAT CCGGCGCTCA CCAGGGCCTC 13700 CGCGGGCGCG CTCCAGTGCG TGGCGCGGGC CCCGCCGACG GCTTGGCGGG GTAGCGCCCG GGTGGTCTAC CGCGCGCTTA GGCCGCGAGT GGTCCCGGAG GGCGACGGTG GCGGACAGCC GGTCGTCGGA GTCCGCGGCC GCCGCGTGCT CCGCGGCCAG CTCGGCCACC TTGCCCGCGG CCGCCGACAG ACCGGTGTCC 13800 CCGCTGCCAC CGCCTGTCGG CCAGCAGCCT CAGGCGCCGG CGGCGCACGA GGCGCCGGTC GAGCCGGTGG AACGGGCGCC GGCGGCTGTC TGGCCACAGG Start 13900 GCCGGGGGGAG CGGTGGGCGT CGCGTTCGTC ATGAGGGGTC CGCCTCTCTG TGGTGGGTCG GGGGCTGCAG GCCGTGGAAC GACCGCGCGA AATACACCAG pokU2 Stodd CGGCCCCCTC GCCACCCGCA GCGCAAGCAG TACTCCCCCAG GCGGAGAGAC ACCACCCAGC CCCCGACGTC CGGCACCTTG CTGGCGCGCGT TTATGTGGTC **pokU1** CGGAGCACCC GTGAACGACT CACAGCGGTG CACCAGACCG ACGAGGATCA CGTGGTCCCC GGCATCGATC CGGCGGTCGA GCACGCATTC GATGCGGGCC 14000 GCCTCGTGGG CACTTGCTGA GTGTCGCCAC GTGGTCTGGC TGCTCCTAGT GCACCAGGGG CCGTAGCTAG GCCGCCAGCT CGTGCGTAAG CTACGCCCGG ACCACGCCGC CCAGCAGCGG CACTCCGCCC AGGCCCGCGG AGACCGGCAG CCCTTCGTAC TTGTCGATGT CCTTGGTGGC GAAGCGCTGC GCCAGGTGTG 14100 TGGTGCGGCG GGTCGTCGCC GTGAGGCGGG TCCGGGCGCC TCTGGCCGTC GGGAAGCATG AACAGCTACA GGAACCACCG CTTCGCGACG CGGTCCACAC 14200 CCTGGTCCTC GCGCAGCAGA TGCACGGCCA TCACGCCGGC CGTCTCGAAC GCCGGGCGGC AGTCGGCTCC CCGGTCCAGA CAGACCAGCA CCATCGGCGG GGACCAGGAG CGCGTCGTCT ACGTGCCGGT AGTGCGGCCG GCAGAGCTTG CGGCCCGCCG TCAGCCGAGG GGCCAGGTCT GTCTGGTCGT GGTAGCCGCC GTCCATCGAC AGTGACGAGA AGGCCGTCGC GGTGAAGCCG CGCGGCGCCC GGGACTCGTC CACCGTGGTC ACCACGGCGA CCCCGCTGGG CCACCGGGAC 14300 CAGGTAGCTG TCACTGCTCT TCCGGCAGCG CCACTTCGGC GCGCCGCGGG CCCTGAGCAG GTGGCACCAG TGGTGCCGCT GGGGCGACCC GGTGGCCCTG Start AGCGAGTCGC GCAGGAGGGT CCGGTCGACG CCGGTGGACG CGGTGGTCAT GGCGGACTTC CCGGACCCGG GCCGGCCGCC GCGCGCACGG CGTCCACCAG 14400 pokU1 TCGCTCAGCG CGTCCTCCCA GGCCAGCTGC GGCCACCTGC GCCACCAGTA CCGCCTGAAG GGCCTGGGCC CGGCCGGCGG CGCGCGTGCC GCAGGTGGTC Stopp CTCGGCCTGC CGCACGGCCG CCGCGCGCTC CACCGCCGGA TCCGCGCGGC CTCGCACCAG ATCCGCGCAAA CGGGCCGCGA TGTTGGCGAA CTGGTCGTCG 14500 pokS4 GAGCCGGACG GCGTGCCGGC GGCGCGCGAG GTGGCGGCCT AGGCGCGCCG GAGCGTGGTC TAGGCGCTTT GCCCGGCGCT ACAACCGCTT GACCAGCAGC

Anhang

	GCCGCGAGCG	TCAGCTCCTC	CACCCGGTCC	TGCCGTTCGA	CGCGCAGGAC	GGGACGGTGC	TCCGGGGGGAG	GGGTGAAGGC	GCGGTCGAGG	ACGATCCGGC	14600
								CCCACTICCG			14700
	GCCGTGACGG	GGTGTCCCAC	ATGCGGCTGG	CCATCCGCAC	CGCCTTCGGC	TTGCTGTGTA	CCCTCCACTG	CGGCAGCGGC	GGCGCGTCGT	CACGCAGCGG	14700
	GCCGACGTCC CGGCTGCAGG	ACGCCCGTGG TGCGGGCACC	ACGCGTCGGC TGCGCAGCCG	CGTCAGGGCC GCAGTCCCGG	GCGCCGACCA CGCGGCTGGT	CCGACACCGT GGCTGTGGCA	CCCGCCGAGC GGGCGGCTCG	AGGTGCTGGG TCCACGACCC	TGACGCGCAG ACTGCGCGTC	CGTGTAGACG GCACATCTGC	14800
	CCGGCGTCGA GGCCGCAGCT	GCAGGGCGCC CGTCCCGCGG	GCCGCCGAGC CGGCGGCTCG	TCGGGGCGGT AGCCCCGCCA	GCCGGATGTC CGGCCTACAG	CTGGGCGGGC GACCCGCCCG	AGCGGCGGGA TCGCCGCCCT	AGCCGAACTC TCGGCTTGAG	GGCGCTCACC CCGCGAGTGG	TGGCGCAGTT ACCGCGTCAA	14900
	CGCCGATCTC GCGGCTAGAG	GCCGCGTTCG CGGCGCAAGC	AGCAGCTCCG TCGTCGAGGC	TGACGGTGGC ACTGCCACCG	GTGCTGGGAG CACGACCCTC	TGGTGGAGGA ACCACCTCCT	ACATGAAGCT TGTACTTCGA	CTCCATCAGC GAGGTAGTCG	ACGAGCCGTC TGCTCGGCAG	CCTCTTCGGC GGAGAAGCCG	15000
	GAGCCGGGCC CTCGGCCCGG	AGGTCGCGCG TCCAGCGCGC	CCTCCCCGGC GGAGGGGCCG	GCAGGTGACC CGTCCACTGG	ATCGGCTTCT TAGCCGAAGA	CGACCAGGAC GCTGGTCCTG	GTGCTTGCCC CACGAACGGG	GCCTTCAGCG CGGAAGTCGC	CCCGCGCGGC GGGCGCGCCG	CCAGGGGGGCG GGTCCCCCGC	15100
	TGCAGCGCGG ACGTCGCGCC	GCGGCAGCGG CGCCGTCGCC	TAGGTACACC ATCCATGTGG	GCGGTGATGT CGCCACTACA	CGTCGCGTTC GCAGCGCAAG	CAGGAGTCGT GTCCTCAGCA	TCGTATCCGT AGCATAGGCA	GCACGGGGTC CGTGCCCCAG	CGCGTCGAAG GCGCAGCTTC	CGGTTCGCCG GCCAAGCGGC	15200
Stopp pokS3	CCGACGCGGC GGCTGCGCCG	GCGGTCCCGG CGCCAGGGCC	TCCCGGCTCG AGGGCCGAGC	CGATCGCGGT GCTAGCGCCA	GACGCGGACC CTGCGCCTGG	TCCGGGGTCC AGGCCCCAGG	GCGCCATCGC CGCGGTAGCG	GGGCAGCATG CCCGTCGTAC	CGGCGCATGG GCCGCGTACC	CGATGCCGCC GCTACGGCGG	15300
	GCATCCGAGG CGTAGGCTCC	ACACCGACCG TGTGGCTGGC	GCAGGGGTGC CGTCCCCACG	CGTCCGCCCG GCAGGCGGGC	GTCACCACAG C <u>AGT</u> G <mark>GTG</mark> TC	ACTGTGCAGA TGACACGTCT	CATGCGACGA GTACGCTGCT	GGCTGCGCGC CCGACGCGCG	CTGGACGTTG GACCTGCAAC	AGATAGTGAC TCTATCACTG	15400
	TGTGCCGCAG ACACGGCGTC	CAGCCCGGTC GTCGGGCCAG	ACCTGATGGA TGGACTACCT	CCGTCAACCA GGCAGTTGGT	TCGGTATCCC AGCCATAGGG	TCCGGTTCTT AGGCCAAGAA	CGACGGGGAA GCTGCCCCTT	GCCGTCCTCG CGGCAGGAGC	ACCTCGATCA TGGAGCTAGT	CCGTGTAACG GGCACATTGC	15500
	GCACTCGGCG CGTGAGCCGC	TGGTGGAATC ACCACCTTAG	GGCCGCCCTC CCGGCGGGAG	CTCGGACTGC GAGCCTGACG	ACCGCGTCGA TGGCGCAGCT	AGCGCACCCG TCGCGTGGGC	GTCGCGGGGG CAGCGCCCCC	ACGCCGGTCA TGCGGCCAGT	CGTAGTCGAG GCATCAGCTC	GAACGGCGGC CTTGCCGCCG	15600
	CGGTGGTCGT GCCACCAGCA	CGGGCAGCCC GCCCGTCGGG	CCGGTAGGTG GGCCATCCAC	TCCGGGGTGC AGGCCCCACG	ACTGCACGGT TGACGTGCCA	GGGGCCCAGT CCCCGGGTCA	TCGACGCCGT AGCTGCGGCA	GCGGGAATCC CGCCCTTAGG	CGCCTCGGGA GCGGAGCCCT	CGGGCGTGGA GCCCGCACCT	15700
	ACAGCAGATG TGTCGTCTAC	GGTCACGTCG CCAGTGCAGC	CCGATGGTGC GGCTACCACG	GCACCAGCAG CGTGGTCGTC	TGCGGACAGG ACGCCTGTCC	CCCAGGCCGT GGGTCCGGCA	GCGGGGGCCAG CGCCCCGGTC	TAGCGGCTGC ATCGCCGACG	GTCCAGTTGA CAGGTCAACT	GCACCTCGCG CGTGGAGCGC	15800
	GCTGCCGGCC CGACGGCCGG	GTCACCCGGG CAGTGGGCCC	CGCCGATGAT GCGGCTACTA	GGAGAAGTGC CCTCTTCACG	CGTCCCTCCG GCAGGGAGGC	CATGGCTGAT GTACCGACTA	CGCGTCCGCG GCGCAGGCGC	GTGCGGTTCC CACGCCAAGG	AGCCCTCGAC TCGGGAGCTG	GCGGTTCAAC CGCCAAGTTG	15900
	GGGATGCGTT CCCTACGCAA	CCGTGCGCAG GGCACGCGTC	TTCGTGGCGG AAGCACCGCC	GCCGTGGTGT CGGCACCACA	CGGCGAACCA GCCGCTTGGT	GCTCAGCACC CGAGTCGTGG	GACGGCGTGC CTGCCGCACG	TGTGCAGCGC ACACGTCGCG	CCCCTCCTCC GGGGAGGAGG	GGCGCCATGG CCGCGGTACC	16000
	AGCGGCGCAG TCGCCGCGTC	GCCCGCGCGG CGGGCGCGCC	AACTCGCCGT TTGAGCGGCA	GCGGACCGGG CGCCTGGCCC	CGGCGGCGCT GCCGCCGCGA	CCCGTGGGCC GGGCACCCGG	GGGCGAACGG CCCGCTTGCC	CACACAGGAC GTGTGTCCTG	AGGACGGTCC TCCTGCCAGG	TGGCGTCCAT ACCGCAGGTA	16100
	GTTCACCATG CAAGTGGTAC	TTGTCCAGGC AACAGGTCCG	GCAGGAGTTC CGTCCTCAAG	CTGGATCTCG GACCTAGAGC	CCGATCGTCA GGCTAGCAGT	TCCAGCGGTA AGGTCGCCAT	GTCGTCGTGC CAGCAGCACG	GGCGGGACGT CCGCCCTGCA	CCTCGGTCGT GGAGCCAGCA	CTCCACCACG GAGGTGGTGC	16200

∐ Start **pokS4**

130

ATGTTGCGGT TGCGCTTGCC GAGGAACCAC GAGCCCTGTT CGGACTGGAG GACGTCGACG AGCACCCGTG CCCGCCCGGG ATCGGTGAAG TACTCCAGGT 16300 TACAACGCCA ACGCGAACGG CTCCTTGGTG CTCGGGACAA GCCTGACCTC CTGCAGCTGC TCGTGGGCAC GGGCGGGCCC TAGCCACTTC ATGAGGTCCA ACCTGACGCC CGAACCCTGG TGCACCCGCT TCTGGTTGCT CCGGGTCGCC TGCACGGTCG GTGACAGCTG TACGACGTTG ACGTTGCCGG GCTCCATCTT 16400 TGGACTGCGG GCTTGGGACC ACGTGGGCGA AGACCAACGA GGCCCAGCGG ACGTGCCAGC CACTGTCGAC ATGCTGCAAC TGCAACGGCC CGAGGTAGAA GGCCTGCATC AGGCAGTGCA GGACGCCGTC GATCTCCTTG ACCAGGAAGC CGAGCATGCC GATCTCGGGC TGGTTGATGA TCGGCTGGTC CCAGCGGGGGC 16500 CCGGACGTAG TCCGTCACGT CCTGCGGCAG CTAGAGGAAC TGGTCCTTCG GCTCGTACGG CTAGAGCCCG ACCAACTACT AGCCGACCAG GGTCGCCCCG ACCTTCCCGT GGTCGGTGTG CACGCGATGG CCCTCGACCG TGAAGAACCG GCCGCTGCGG TGGCCGAGAT CGCCGGTGTC AGGCCGGAAG GACCACTCCG 16600 TGGAAGGGCA CCAGCCACAC GTGCGCTACC GGGAGCTGGC ACTTCTTGGC CGGCGACGCC ACCGGCTCTA GCGGCCACAG TCCGGCCTTC CTGGTGAGGC CCAGCTCGGC GAAGGGGACC CGGGTGACCT CGAAGGTGTG GGCCTCCCTG CGTGCGGTCA GCCAGGCGAG CGTGGCCTTG ACCGACGCCC GGTCCTCGGC 16700 GGTCGAGCCG CTTCCCCTGG GCCCACTGGA GCTTCCACAC CCGGAGGGAC GCACGCCAGT CGGTCCGCTC GCACCGGAAC TGGCTGCGGG CCAGGAGCCG Start pokS3 CGCGGCTCCC GACTCGGTGA ACCGCGCCTG CGGACCGGGT CCGCCGGCTG TGAGTGTGCG CTCGGTGGTC ATGGGGTCAC CTCGACCCTC GTCCCGTCCA 16800 GCGCCGAGGG CTGAGCCACT TGGCGCGGAC GCCTGGCCCA GGCGGCCGAC ACTCACACGC GAGCCACCAG TACCCCAGTG GAGCTGGGAG CAGGGCAGGT 16900 GCAGACCCCG CAGCGCCTTC TTGTCGGGCT TGCCGACGGG TGTGTGCGGG AGGTCGGGCA GGATCTCCAG GCGCTCGGGA ATCTTGAACG CGGCCAGCCC CGTCTGGGGC GTCGCGGAAG AACAGCCCGA ACGGCTGCCC ACACACGCCC TCCAGCCCGT CCTAGAGGTC CGCGAGCCCT TAGAACTTGC GCCGGTCGGG 17000 TCGCCCGCTC AGCGCCGCCG ACACGTCCTC CAGGGTGAGC GCGCGACCCT CGTGGAGACG GACGAACAGG CAGACCCGCT CGCCGACTTC GGGGTCCGGC AGCGGGCGAG TCGCGGCGGC TGTGCAGGAG GTCCCACTCG CGCGCTGGGA GCACCTCTGC CTGCTTGTCC GTCTGGGCGA GCGGCTGAAG CCCCAGGCCG GCCGGGACCG CGGCCACCTC GGCGACCTCG GGCATCTCCT GCACCAGGGT CTCTATCTCC CCGGCCGCGA TCTTCTCGCC CCCGCGGTTG ATCAGGTCCT 17100 CGGCCCTGGC GCCGGTGGAG CCGCTGGAGC CCGTAGAGGA CGTGGTCCCA GAGATAGAGG GGCCGGCGCT AGAAGAGCGG GGGCGCCAAC TAGTCCAGGA TGACCCGGCC GCACACCACC ACATGGCCCT GCGCGGTGAT CCGCACCAGG TCACCCGTGC GGTACCAGCC GTCGGGCGTG AACGACAGGG CGTTCTGGTC 17200 ACTGGGCCGG CGTGTGGTGG TGTACCGGGA CGCGCCACTA GGCGTGGTCC AGTGGGCACG CCATGGTCGG CAGCCCGCAC TTGCTGTCCC GCAAGACCAG GGGCACGCCG TAGTAGCCAC GGGGCGTGTA GGGGCCGCGG GTGAGGAGTT CGCCCGTCTC GCCGGGCCGC ACCGGACGGC CGTCCGGGCC GACGACCAGC 17300 CCCGTGCGGC ATCATCGGTG CCCCGCACAT CCCCGGCGCC CACTCCTCAA GCGGGCAGAG CGGCCCGGCG TGGCCTGCCG GCAGGCCCGG CTGCTGGTCG 17400 AGTTCGTCGT ACGCGCTGAC GGGGGGCGCCC TGCGTGCCGT GGGCGACCTC GTCCGTCGCG TCGGGAGCCG TGTAGCAGAT GAGGCCCTCG GCCATCCCGT TCAAGCAGCA TGCGCGACTG CCCCCGCGGG ACGCACGGCA CCCGCTGGAG CAGGCAGCGC AGCCCTCGGC ACATCGTCTA CTCCGGGAGC CGGTAGGGCA ACACCTGCTG GACCCGGCAG CCCAGGGCGG GCCCGATCCG GGCGGCGAGC TCGGGTGAGA GCACCGAACC GCCCACGTGC ACATGGCGCA GACTCGACAG 17500 TGTGGACGAC CTGGGCCGTC GGGTCCCGCC CGGGCTAGGC CCGCCGCTCG AGCCCACTCT CGTGGCTTGG CGGGTGCACG TGTACCGCGT CTGAGCTGTC 17600 GTCGCGTCCG CAACCGGGCG CGGCCTCCGT CCACTTCAGG GCCACCGCGG GCACCGCCGA GGTGGTCGTG ACGCCCTCCC GTTCGATGGC GGCGAACACC CAGCGCAGGC GTTGGCCCGC GCCGGAGGCA GGTGAAGTCC CGGTGGCGCC CGTGGCGGCT CCACCAGCAC TGCGGGAGGG CAAGCTACCG CCGCTTGTGG GCGTCGGGCC GCGGCGAGGA CAGCAGCACG ACGCGGCCGC CGGCCGAGAG GGTGCCGAGG ATGCCCGGGC TGGCGAGCGG GTAGTTGTGG CCGGCGGGCA 17700 CGCAGCCCGG CGCCGCTCCT GTCGTCGTGC TGCGCCGGCG GCCGGCTCTC CCACGGCTCC TACGGGCCCG ACCGCTCGCC CATCAACACC GGCCGCCCGT GGACCGTCAG GTAGACGGTC TCCGCGGTGA CGGCACACGC GGCGGCGGAC TGCCGGATGT TGTACTCGTA GTCGTTGTGC GTCCGGCTGA TCACCTTCGG 17800 CCTGGCAGTC CATCTGCCAG AGGCGCCACT GCCGTGTGCG CCGCCGCCTG ACGGCCTACA ACATGAGCAT CAGCAACACG CAGGCCGACT AGTGGAAGCC CAGGCCGGTG GTGCCGCCGG ACAGCAGGAA CAGGGCCACC TCCATGGCGT CGGGGGCGGC CTTGTCCAGC CTCCCGCGCC GCGCGGCCGT GTCGCCGTCC 17900 GTCCGGCCAC CACGGCGGCC TGTCGTCCTT GTCCCGGTGG AGGTACCGCA GCCCCGCCG GAACAGGTCG GAGGGCGCGG CGCGCCGGCA CAGCGGCAGG

Stopp

pokM3

131

Anhang

		GGCCTCAGCA CCGGAGTCGT	GGGCGCGCAC CCCGCGCGTG	GTCGACGCCG CAGCTGCGGC	CCGGGCCGTA GGCCCGGCAT	CGTCGTCGCC GCAGCAGCGG	GACGACCAGC CTGCTGGTCG	ACCAAGGGCT TGGTTCCCGA	CGTCGGGCAG GCAGCCCGTC	CCGTTCGGCG GGCAAGCCGC	ACCCGGTGGG TGGGCCACCC	18000
		CGAGGGCCTG GCTCCCGGAC	ATGGTCGTAG TACCAGCATC	CCCCGCCAGG GGGGCGGTCC	TGCCGGGCAC ACGGCCCGTG	GACGAGCGCC CTGCTCGCGG	TTGGCGCGCA AACCGCGCGT	CATGGGCCCC GTACCCGGGG	GATCGAGGCC CTAGCTCCGG	AGTTCGTACT TCAAGCATGA	CGCGGTGCGG GCGCCACGCC	18100
		CGGCAGCATC GCCGTCGTAG	ATCACCGGCG TAGTGGCCGC	CCACACCGAG GGTGTGGCTC	CCGGAAACAG GGCCTTTGTC	GCCAGCGTCA CGGTCGCAGT	CGACGACGAA GCTGCTGCTT	CTCCCAGCAG GAGGGTCGTC	TTCGGCAACT AAGCCGTTGA	GCACGAGAAC CGTGCTCTTG	CGTGTCGCCG GCACAGCGGC	18200
		TCGGCCAGCC AGCCGGTCGG	CTTGGCCCGC GAACCGGGCG	GAGCCGCTCG CTCGGCGAGC	GCCAGGGCGT CGGTCCCGCA	CCGCCGAGGC GGCGGCTCCG	GGCCAGCTCC CCGGTCGAGG	GCGTAGCCGA CGCATCGGCT	GCCGGACGTC CGGCCTGCAG	GCCGTCGACC CGGCAGCTGG	AGCGCGGTCC TCGCGCCAGG	18300
		GGTCGGCCCA CCAGCCGGGT	GGCGTCCGCC CCGCAGGCGG	CAGTCCCACA GTCAGGGTGT	TCAGTGCGCC AGTCACGCGG	CAGCGGGCGG GTCGCCCGCC	CCGCGCCAGC GGCGCGGTCG	AGTCCGCCTC TCAGGCGGAG	GACGTAACGA CTGCATTGCT	CGCGCCGCGT GCGCGGCGCA	CTGCGGGCCA GACGCCCGGT	18400
13	Stopp	GGGCACGAAC CCCGTGCTTG	CCTTCGCGTT GGAAGCGCAA	TCACCGTGCG <u>AGTG</u> GCACGC	CTCCTCTCGT GAGGAGAGCA	CGGCCGGGTC GCCGGCCCAG	GGGATCGGGG CCCTAGCCCC	GTGTCGACGC CACAGCTGCG	GCTGCGCGAG CGACGCGCTC	CAGATCGGCG GTCTAGCCGC	ACCGCGTGGA TGGCGCACCT	18500
	pokM1	CGGTGGGGCG GCCACCCCGC	GTCCCAGAAG CAGGGTCTTC	AGCGTCGCGG TCGCAGCGCC	GCAGCGGCAT CGTCGCCGTA	CCTGAACTGC GGACTTGACG	CTTTCGAGAC GAAAGCTCTG	CGCGCCGGAT GCGCGGCCTA	CCGCACGGTC GGCGTGCCAG	ATCACCGAGT TAGTGGCTCA	CGAGGCCCAT GCTCCGGGTA	18600
		CTCGGCCAGG GAGCCGGTCC	GCCCGGTGCG CGGGCCACGC	GATCCACCTC CTAGGTGGAG	GGACGCCGAC CCTGCGGCTG	AGCCGGGTCT TCGGCCCAGA	CGGCCGCGAC GCCGGCGCTG	CTGTCGGCTC GACAGCCGAG	ACCTCGGAGG TGGAGCCTCC	TGAGGAAGGT ACTCCTTCCA	GCGCAGCTCC CGCGTCGAGG	18700
		TCGCCCGCCA AGCGGGCGGT	GGCCGGCCCA CCGGCCGGGT	CGGGGCCTCG GCCCCGGAGC	GCCTCGTCGT CGGAGCAGCA	CCTCCTGGTC GGAGGACCAG	GTGCGGCGCG CACGCCGCGC	TCCGTGGGCA AGGCACCCGT	CCTCGCCCAG GGAGCGGGTC	CAGCGGGAGC GTCGCCCTCG	CGCCGTTGAC GCGGCAACTG	18800
		CGGGTTCCGG GCCCAAGGCC	CGGCAGCGTG GCCGTCGCAC	CGCAACACGG GCGTTGTGCC	CCGCGTAGCC GGCGCATCGG	GAGGCCGTAG CTCCGGCATC	CGGTCCGCCA GCCAGGCGGT	GCTCCCAGGA CGAGGGTCCT	GGCGAAGGCC CCGCTTCCGG	TCCAGGGCAC AGGTCCCGTG	TGATGTCGGC ACTACAGCCG	18900
		GGTGCCGTGC CCACGGCACG	GCGGCCAGCT CGCCGGTCGA	CGGCGTCGAT GCCGCAGCTA	GACCTCGGAC CTGGAGCCTG	GAGGTCGACA CTCCAGCTGT	TGCCGAGCCC ACGGCTCGGG	CCGCCACGAC GGCGGTGCTG	GTCCAGCCGA CAGGTCGGCT	AGCTGACGGT TCGACTGCCA	GCCGGTGTCC CGGCCACAGG	19000
		CCGGCGGCCC GGCCGCCGGG	CGCGGTGCGC GCGCCACGCG	CGCCAGCGCG GCGGTCGCGC	TCCAGGAACG AGGTCCTTGC	CGTTGCCCGC GCAACGGGCG	CGCGTAGCTG GCGCATCGAC	GACTGCCCCG CTGACGGGGC	GCAGGCCCAG CGTCCGGGTC	CAGTTGACCG GTCAACTGGC	CAGGACGAGA GTCCTGCTCT	19100
		ACAGCACCAG TGTCGTGGTC	GAAGTCGAGA CTTCAGCTCT	CTGCCGGGCG GACGGCCCGC	GGAACAGCTG CCTTGTCGAC	GTGCAGCACC CACGTCGTGG	CAGGCACCCT GTCCGTGGGA	CGGCCTTCGG GCCGGAAGCC	CCGCAGCACC GGCGTCGTGG	GCCCGCAGCG CGGGCGTCGC	AGTCCTCGTC TCAGGAGCAG	19200
		GAGCGCGCGC CTCGCGCGCG	AGCGGCCGGT TCGCCGGCCA	CGTCCAGGAC GCAGGTCCTG	GCCGGCGGCG CGGCCGCCGC	TGCACGACGC ACGTGCTGCG	CTCGGACGGG GAGCCTGCCC	CGGCAGCCCC GCCGTCGGGG	AGCGCGGTCG TCGCGCCAGC	GCGACAGGAG CGCTGTCCTC	CTTCTCCGCG GAAGAGGCGC	19300
		GCGTCCGCGT CGCAGGCGCA	CCGCGAGGTC GGCGCTCCAG	CAGCGCGACC GTCGCGCTGG	GTGACCACGG CACTGGTGCC	TGCTGCCCAG ACGACGGGTC	CCGCTCCAGG GGCGAGGTCC	GACCTGACCG CTGGACTGGC	CTTCCACCCG GAAGGTGGGC	GCTCCGGACC CGAGGCCTGG	AGCGGATCGG TCGCCTAGCC	19400
		TGACGTCGTC ACTGCAGCAG	CCACTCGTCC GGTGAGCAGG	CGTGGCGGCA GCACCGCCGT	GCGACCGCCG CGCTGGCGGC	TCCGGTCAGC AGGCCAGTCG	ACGAGACGGC TGCTCTGCCG	GTGCGCCCCG CACGCGGGGC	CTCGGCCAGC GAGCCGGTCG	CAGTGCGCGA GTCACGCGCT	CCTCCAGCCC GGAGGTCGGG	19500
		GAGGGCGCCG	AGTCCGCCGG	TGACCAGATA ACTGGTCTAT		GGGCGGCAGG			TCGCCGTCCA	GCAGGGCGAG		19600

Start **pokM**

Anhang

132
TCGGGCTGTC CCTCGCGCAC CGCCACGACG TCCTCGCCGT GCGTCGTGCC GAGCAGGTCC ACGAACCCCG CGACGTCCCG GGGCGAGGAC CCGAGGTCCA 19700 AGCCCGACAG GGAGCGCGTG GCGGTGCTGC AGGAGCGGCA CGCAGCACGG CTCGTCCAGG TGCTTGGGGC GCTGCAGGGC CCCGCTCCTG GGCTCCAGGT CGATGCCGCC CCACAGGTCC GGATGCTCAC CGGCGATGAC CCGGCCCAGC CCCCACAGGG GACCGTGGGC GAGCGAGGCC TCGGTCGCGC TCTCGCGCAC 19800 GCTACGGCGG GGTGTCCAGG CCTACGAGTG GCCGCTACTG GGCCGGGTCG GGGGTGTCCC CTGGCACCCG CTCGCTCCGG AGCCAGCGCG AGAGCGCGTG TCCCTGCGTG ACGCACCACA GCCGGGGCGG ACGCGGGGCC GGGGCCAGCC GCTGCGCCGT CCGCGCGAGC AGCCAGGACG CCCGCAGGAA CGCCCTGCCG 19900 AGGGACGCAC TGCGTGGTGT CGGCCCCGCC TGCGCCCCGG CCCCGGTCGG CGACGCGGCA GGCGCGCTCG TCGGTCCTGC GGGCGTCCCT GCGGGACGGC ACCGGTTCCT GAGGCCGTCC CGGAGCCGGC ACGACCACCA CGGTGTGGTC GTCGGAGAGT TCACCCTCGC GCAGCTCGTC CGGGTCGGAC GCGATCCGGT 20000 TGGCCAAGGA CTCCGGCAGG GCCTCGGCCG TGCTGGTGGT GCCACACCAG CAGCCTCTCA AGTGGGAGCG CGTCGAGCAG GCCCAGCCTG CGCTAGGCCA GCGGCACCGC CTCGGCGACC AGCCGGCGGC TCAACCGCTC CACCAGGGAG CGGTCGTCGC CGACGAGCAC CACCGTCCGA TGCGCACCGG GGTCCTGCTG 20100 CGCCGTGGCG GAGCCGCTGG TCGGCCGCCG AGTTGGCGAG GTGGTCCCTC GCCAGCAGCG GCTGCTCGTG GTGGCAGGCT ACGCGTGGCC CCAGGACGAC 20200 TTCCATGGGG CGCCATCGCA TGCGGTGGAC GAGCCGGCGG GGACCGGTGG TGGTCCCGAC GTCGCCCTCC AGCAGTCCGT ACCGCAGCCC GTCGAGCCGG AAGGTACCCC GCGGTAGCGT ACGCCACCTG CTCGGCCGCC CCTGGCCACC ACCAGGGCTG CAGCGGGAGG TCGTCAGGCA TGGCGTCGGG CAGCTCGGCC CCCACCAGCG TGCCCTGCGG GCCCTCGATC TCCACGTCGA CGACGTCCTC GCCGGCCAGC CGCACGGTGA TGCGGGCGGT GGCCGGGCAC GCCCCTTCGA 20300 GGGTGGTCGC ACGGGACGCC CGGGAGCTAG AGGTGCAGCT GCTGCAGGAG CGGCCGGTCG GCGTGCCACT ACGCCCGCCA CCGGCCCGTG CGGGGAAGCT 20400 GCGCGACCCG TTTGATGTGC GCGGGCATGC GCAGCACCGG CGGACCCGGG AACACCACGG ACGCGGTGGA CAGCGCGGCG TCCAGGACCG AGGCCCAGGT CGCGCTGGGC AAACTACACG CGCCCGTACG CGTCGTGGCC GCCTGGGCCC TTGTGGTGCC TGCGCCACCT GTCGCGCCGC AGGTCCTGGC TCCGGGTCCA 20500 GGCCGGCGGC TCCGAGGACT TGGGGTCCGC GGCGACCCGG GCCACCAGGA CGCCCTCGCC GCCGCGCAGT TCGGTGATCT CCCAGGCGAA GCCCATGGCG CCGGCCGCCG AGGCTCCTGA ACCCCAGGCG CCGCTGGGCC CGGTGGTCCT GCGGGAGCGG CGGCGCGTCA AGCCACTAGA GGGTCCGCTT CGGGTACCGC 20600 CGCCGGCCGT GGTGTGGGTG ACCAGACCCC TGTCGTCGCC GGGTTCCCCG ACGATGCGCG AGGTGAGCCG GAGCGTGGCG TCCTGGCTGA CGACCTGGAC 20700 GCGGCCGGCA CCACACCCAC TGGTCTGGGG ACAGCAGCGG CCCAAGGGGC TGCTACGCGC TCCACTCGGC CTCGCACCGC AGGACCGACT GCTGGACCTG 20800 CTCACGCGGC TGGGACACCG ACACGGGCAC GCGCAGCGCC ACATCGGTGA GATCCGGCAG GGTGCCTCCC GAGGCGGCGG CGTTCAGGAA GGTGTTCAGC GAGTGCGCCG ACCCTGTGGC TGTGCCCGTG CGCGTCGCGG TGTAGCCACT CTAGGCCGTC CCACGGAGGG CTCCGCCGCC GCAAGTCCTT CCACAAGTCG 20900 AGCACGGCGG CCGGGATGAT CTCCACCTCG CGGACCGGAT GGTCACCCGG GTAGGGCCTG CTGCCGCGGT CGAGGTGGGT CCGCCACGCC TGCGCCGGGG TCGTGCCGCC GGCCCTACTA GAGGTGGAGC GCCTGGCCTA CCAGTGGGCC CATCCCGGAC GACGGCGCCA GCTCCACCCA GGCGGTGCGG ACGCGGCCCC TCGTGCCCGC GAACGTGGTC CGTCCGCCGA GCAGGGTGTG CGTGCTGACG TCGTGCCGGT CGCCGGCGGC GGAGCGCGGC GGCGGCTCCT CCAGCCAGTA 21000 AGCACGGGCG CTTGCACCAG GCAGGCGGCT CGTCCCACAC GCACGACTGC AGCACGGCCA GCGGCCGCCG CCTCGCGCCG CCGCCGAGGA GGTCGGTCAT CGGCTTGCGC TGCCAGGCGA CGCACGGCAG CTCGGCGGGG GCGGTCGCCG GCCAGGAACG CGACCAGTCC ACGTCGGCGC CGTGGCAGTA CAGCTGTCCG 21100 GCCGAACGCG ACGGTCCGCT GCGTGCCGTC GAGCCGCCCC CGCCAGCGGC CGGTCCTTGC GCTGGTCAGG TGCAGCCGCG GCACCGTCAT GTCGACAGGC 21200 AGACCGGCCA GCAGTGTCTC GCGCTCGGGC CGGCGGCGAC GCAGCGAGTG GGTGACGAAG GCGTCCTCGA CGCCCAGGTG GTCGAGCGTC TCGCCGACCG TCTGGCCGGT CGTCACAGAG CGCGAGCCCG GCCGCCGCTG CGTCGCTCAC CCACTGCTTC CGCAGGAGCT GCGGGTCCAC CAGCTCGCAG AGCGGCTGGC AGTGCTCGAC CACCGGATGC GGCGACACCT CCAGGAAGAG CCGGTACCCG TCCTCGACGG CCGCCGCGAC ACCCTGCGCG AACCGCACCC GGCCGCCGAG 21300 TCACGAGCTG GTGGCCTACG CCGCTGTGGA GGTCCTTCTC GGCCATGGGC AGGAGCTGCC GGCGGCGCTG TGGGACGCGC TTGGCGTGGG CCGGCGGCTC

GTTGGCGGCC CAACCGCCGG	CAGTAGCCGC GTCATCGGCG	CGTCGCGCGG GCAGCGCGCC	GGCGCCGCTG CCGCGGCGAC	CGGGGGTCGT GCCCCCAGCA	CCAGAGCCGT GGTCTCGGCA	GCTGTAGACG CGACATCTGC	GGAAGCGTGG CCTTCGCACC	CGGGTGACGG GCCCACTGCC	CACCAGGTCG GTGGTCCAGC	21400
GCCGCCGCGG CGGCGGCGCC	CCGTCAGGTC GGCAGTCCAG	GTCGAGGAGC CAGCTCCTCG	GGGTCCATGT CCCAGGTACA	GCGGGCTGTG CGCCCGACAC	GAACGCCACG CTTGCGGTGC	TCCGAATCCA AGGCTTAGGT	CGGCCCGCAC GCCGGGCGTG	CGCGACCCCC GCGCTGGGGG	TCGGCGCGCC AGCCGCGCGG	21500
ACCGCTCGGA TGGCGAGCCT	GATCTCCACG CTAGAGGTGC	ACCGCGGGGA TGGCGCCCCT	CGTCCCCGGA GCAGGGGCCT	GACGACGGTG CTGCTGCCAC	GAGCCGGGCG CTCGGCCCGC	ACGCGGTGAT TGCGCCACTA	CGCCACGGTC GCGGTGCCAG	ACGTCCCGGC TGCAGGGCCG	GGCCGCCGAG CCGGCGGCTC	21600
ACGGCGTGCG TGCCGCACGC	GCCTCCTCGG CGGAGGAGCC	CCGTCAGACC GGCAGTCTGG	CACCATGGCC GTGGTACCGG	ATGGCTCCCC TACCGAGGGG	GTCCGGCCAC CAGGCCGGTG	CCGGCGCAGC GGCCGCGTCG	AGCAGGGAGC TCGTCCCTCG	GTCGGCACAC CAGCCGTGTG	CAGCCGGGCG GTCGGCCCGC	21700
CCCTGCTCCC GGGACGAGGG	GCGTGAGCAT CGCACTCGTA	CCCGGCGGCC GGGCCGCCGG	ACCGCGGCGG TGGCGCCGCC	CGATCTCACC GCTAGAGTGG	GACCGAGTGG CTGGCTCACC	CCGATGACCG GGCTACTGGC	CGTCGGGGCG GCAGCCCCGC	CAGCCCGCGC GTCGGGCGCG	TCCCGCCACA AGGGCGGTGT	21800
GTGCGCTCAG CACGCGAGTC	CGCCGTCTGC GCGGCAGACG	ACGGCGAAGA TGCCGCTTCT	TCAGCGGCTG AGTCGCCGAC	CACCACGTCG GTGGTGCAGC	ACGGGCTGCG TGCCCGACGC	GGGCGTCGTC CCCGCAGCAG	CAGGAGGGCG GTCCTCCCGC	GCGGTGAGGG CGCCACTCCC	AGACGCCCAT TCTGCGGGTA	21900
CTCCTCCAGG GAGGAGGTCC	AAGACGGGCT TTCTGCCCGA	CCAGCTCCTC GGTCGAGGAG	CACGACCCGC GTGCTGGGCG	GCGAACACCG CGCTTGTGGC	GTTCCTCGAC CAAGGAGCTG	GAGGAGTTCA CTCCTCAAGT	CGTCCCATGC GCAGGGTACG	CGGTCCACTG GCCAGGTGAC	CGAGCCGTGC GCTCGGCACG	22000
CCGGAGAACA GGCCTCTTGT	CCCAGACCAG GGGTCTGGTC	ACCGCGCCCG TGGCGCGGGC	GCCGACGGCA CGGCTGCCGT	GCACCGCGCC CGTGGCGCGG	GGTGCCGACA CCACGGCTGT	CCCGGCGCGC GGGCCGCGCG	CACCCGAGTT GTGGGCTCAA	CGTGAACTCC GCACTTGAGG	CTCAGCCGGG GAGTCGGCCC	22100
AGACGAGTTG TCTGCTCAAC	GTTGCCGTTC CAACGGCAAG	GCGGCCACCA CGCCGGTGGT	CGGCGGCCCG GCCGCCGGGC	GTGGAGCAGA CACCTCGTCT	TGCGTGCGCC ACGCACGCGG	GCGTGGCCAG CGCACCGGTC	TGTGTGGCCC ACACACCGGG	ACCTCCGCGA TGGAGGCGCT	GATCCGTCGC CTAGGCAGCG	22200
GGGGGTCTCG CCCCCAGAGC	TCGAGCCGGT AGCTCGGCCA	CGGCGAGCCT GCCGCTCGGA	GCCCGCGTAC CGGGCGCATG	TCCCGCACCG AGGGCGTGGC	CGGCCTCGCT GCCGGAGCGA	CGCGCCCGAC GCGCGGGCTG	AGCGGATACA TCGCCTATGT	CGGCGGGCTC GCCGCCCGAG	CGCGTCCCGC GCGCAGGGCG	22300
ACGGCGCGCG TGCCGCGCGC	GTCCCTCGTC CAGGGAGCAG	CAGGGCCTGC GTCCCGGACG	GGACCCTCGG CCTGGGAGCC	GGTCCGGTGC CCAGGCCACG	CTGCTCCAGG GACGAGGTCC	ACGACGTGCG TGCTGCACGC	CGATGGTGCC GCTACCACGG	GCCGTATCCG CGGCATAGGC	TAGCCCGAGA ATCGGGCTCT	22400
CCCCGGCCCG GGGGCCGGGC	CCGCGGACCG GGCGCCTGGC	TCGGACGCGG AGCCTGCGCC	GCCAGGGCGT CGGTCCCGCA	CGGCTCGGTG GCCGAGCCAC	ACCACCCGAA TGGTGGGCTT	GGCCCGAAGT CCGGGCTTCA	CGCCCACGGG GCGGGTGCCC	ACGGCGGGGT TGCCGCCCCA	TGGGCTCGGT ACCCGAGCCA	22500
GAAGTTCAGA CTTCAAGTCT	CTGGGCGGGA GACCCGCCCT	TCTCGGCGTG AGAGCCGCAC	CTGGAGAGCG GACCTCTCGC	AGGACCGTCT TCCTGGCAGA	TGATCACACC ACTAGTGTGG	GGCGATGCCC CCGCTACGGG	GCGCCCGCCT CGCGGGCGGA	CCAGATGCCC GGTCTACGGG	GATGTTGGGT CTACAACCCA	22600
TTGACGGACC AACTGCCTGG	CGATCAGACA GCTAGTCTGT	CGGCCGGTCC GCCGGCCAGG	TGCGGCCGGT ACGCCGGCCA	TCACGCCGAA AGTGCGGCTT	GACCGAGGCC CTGGCTCCGG	ATCGCCCCGG TAGCGGGGCC	CCTCCAGCGG GGAGGTCGCC	ATCGCCCGCG TAGCGGGCGC	CGGGTACCCG GCCCATGGGC	22700
TCCCGTGCGC AGGGCACGCG	CTCGACGTAG GAGCTGCATC	CCGACGGTGA GGCTGCCACT	CCGGGTCGAG GGCCCAGCTC	CCCCGCGTGC GGGGCGCACG	TCGTACGTCC AGCATGCAGG	GGCGCATGAG CCGCGTACTC	ATGGGCCTGC TACCCGGACG	GCCTCGCCGT CGGAGCGGCA	TGGGCGCCAT ACCCGCGGTA	22800
GATGCCGCTG CTACGGCGAC	GTCCTGCCGT CAGGACGGCA	CCTGGTGGAC GGACCACCTG	CGCGCTGCCC GCGCGACGGG	CGGATCAGGG GCCTAGTCCC	CGAGGACGCG GCTCCTGCGC	GTCCCCGTCG CAGGGGCAGC	CGCCGGGCGT GCGGCCCGCA	CCGACAGCCG GGCTGTCGGC	CTTGAGGACG GAACTCCTGC	22900
ACGACCCCGC TGCTGGGGGCG	CGCCCTCACC GCGGGAGTGG	GCGGCCGTAG CGCCGGCATC	CCGTCGCCGT GGCAGCGGCA	TCGCGTCGAA AGCGCAGCTT	GGACTTGCAG CCTGAACGTC	CGCCCGTCGG GCGGGCAGCC	GTGCCGTCGC CACGGCAGCG	GCCCGCCGCG CGGGCGGCGC	TCCAGCACCA AGGTCGTGGT	23000

Anhang

ω

	Stopp	GCCGGCCCGG	ACGAGGCGCC	TACTTGTGGC	CGACGACCAG	GGAGTGGCTG	AACCCGAGGC	CGTCGTAGCG	CTCGACGCGG	GAGAAGCCGG	CGTCGCGAAT	24800
	pokMT1	CGGCCGGGCC	TGCTCCGCG	<u>AT</u> GAACACCG	GCTGCTGGTC	CCTCACCGAC	TTGGGCTCCG	GCAGCATCGC	GAGCTGCGCC	CTCTTCGGCC	GCAGCGCTTA	
		GGCCTTGTCC CCGGAACAGG	ATGTCCTTCG TACAGGAAGC	GGGCGTACGT CCCGCATGCA	CATGCCCTCT GTACGGGAGA	CCGGAGGCGA GGCCTCCGCT	GGGTGAGGAA CCCACTCCTT	GTAGGGCGAG CATCCCGCTC	ACCAGCCCGC TGGTCGGGCG	CGCTCATCGA GCGAGTAGCT	GCCGGTGCCC CGGCCACGGG	24900
		TCGTCGTTCG AGCAGCAAGC	AGACGAAGTT TCTGCTTCAA	GTAGACCAGG CATCTGGTCC	CAGACACCGC GTCTGTGGCG	CGGGCGGCAG GCCCGCCGTC	GGCCTCGTAG CCGGAGCATC	CACTTGCGCA GTGAACGCGT	GCAGCTCGGT CGTCGAGCCA	GTTCCGCTCC CAAGGCGAGG	AGCGACCAGA TCGCTGGTCT	25000
		TCTCGAAGAT AGAGCTTCTA	GTGGAAGAAC CACCTTCTTG	ATGATCCCGT TACTAGGGCA	CGGCGCCCTC GCCGCGGGAG	GGGCAGCGCG CCCGTCGCGC	TCGGTGAACA AGCCACTTGT	GGTCGCCCGG CCAGCGGGCC	GTGGAAGTGC CACCTTCACG	ACCCGCTTGC TGGGCGAACG	TCAGCTCGGC AGTCGAGCCG	25100
		GTCCTCGGTC CAGGAGCCAG	CGCTGCGCCG GCGACGCGGC	CGATGCGGGT GCTACGCCCA	GACGCTCTCC CTGCGAGAGG	TGGTCGAAGA ACCAGCTTCT	CCGTCACCTC GGCAGTGGAG	CAGGTGCGGG GTCCACGCCC	TAGCGGCGGG ATCGCCGCCC	CCAGTTCGAT GGTCAAGCTA	GCTGTTGGTG CGACAACCAC	25200
		CCGTCGCCGC GGCAGCGGCG	CGCCGATGTC GCGGCTACAG	GATGACATGG CTACTGTACC	TGCAGCCCGG ACGTCGGGCC	AGAAGTCGTA TCTTCAGCAT	CCGGTCGAGG GGCCAGCTCC	ATCTGCGCGA TAGACGCGCT	ACGCCTTCTT TGCGGAAGAA	CGACGCGTCG GCTGCGCAGC	CCCATGTTCC GGGTACAAGG	25300
		GGTAGAACAC CCATCTTGTG	CTCCTGCAAC GAGGACGTTG	TCGGGGTGCG AGCCCCACGC	CCGTGAGCCG GGCACTCGGC	TTCGTACAGC AAGCATGTCG	GTGTCGCCGG CACAGCGGCC	GACCCTCGAT CTGGGAGCTA	GTGGCGCAGG CACCGCGTCC	CCCACGTTGG GGGTGCAACC	TGTTCTGCCG ACAAGACGGC	25400
		CATCGACTCG GTAGCTGAGC	GCGAAGTCGC CGCTTCAGCG	CGAGGGAGCG GCTCCCTCGC	GTTGATGATG CAACTACTAC	TCGGCCTGGA AGCCGGACCT	TGTCCACCAG ACAGGTGGTC	CGGGCCCAGG GCCCGGGTCC	AAGCGCGGGC TTCGCGCCCG	TCGACCTGAG AGCTGGACTC	CAGCTTGCGC GTCGAACGCG	25500
		CGCACCATCT GCGTGGTAGA	CGCTGTTGAC GCGACAACTG	GTACTTGTTG CATGAACAAC	TCCTTCTTCT AGGAAGAAGA	CCAGAAGCCG GGTCTTCGGC	CAGCGAGGCG GTCGCTCCGC	AGCCCGAGGA TCGGGCTCCT	GCAGGATGCG CGTCCTACGC	GGCGGGCTGG CCGCCCGACC	GCCTCGGTGC CGGAGCCACG	25600
		CGATCGCCTC GCTAGCGGAG	CGCGACCTCC GCGCTGGAGG	TCGACATCCA AGCTGTAGGT	TGCCCTCGGC ACGGGAGCCG	CGCCTCCAGG GCGGAGGTCC	CGCTCGAAGA GCGAGCTTCT	GGTCGAACTC CCAGCTTGAG	AAGCCCCGTG TTCGGGGGCAC	CGCAGCAGTT GCGTCGTCAA	CGAACGCGGT GCTTGCGCCA	25700
	start pokMT1	CGTGCCGTGA GCACGGCACT	ATGAGGATCC TACTCCTAGG	GCAGGTAGTC CGTCCATCAG	CGCTTCGCTG GCGAAGCGAC	ACGGTGATGG TGCCACTACC	TGCCGCTGGC ACGGCGACCG	CATGGACGTC GTA CCTGCAG	CCTTCCGATG GGAAGGCTAC	TGGGGAAGGC ACCCCTTCCG	GAGCGGGCGC CTCGCCCGCG	25800
		TCGCGGGCAC	ACCGTCGCAA	GGGCCTCTAG	СССССССТС	GACGCCCGCT	CGAATCGAAC	CGGCGGCTGT	CCTTCAACTT	GCGTTCGAGG	TCGCCTCAAG	25900
Start		CGGTGCCCCG	AATGCTTCGG	GACGCGGCAT	TGCAGGCTGG	ATCCACTTCA	GATATCGGGG	GATGAGACAG	C ATG GCCCGA	GACGTAGTGA	TAACGGGTGT	26000
pokP1		CGGCGTCGTC	GCTCCAGGAG	GCATCGGCAG	CAAACCGTTC	TGGGACCTGC	TCGTCTCCGG	CCGCACCGCG	ACCCGCACCA	TCACCCACTT	CGACGCCTCG	26100
		CCCTTTCGGT	CGACCGTGGC	CGCCGAGTGC	GACTTCGACG	CGCAGGCCGA	AGGGCTCACG	GCCGAGGAGG	CCGACCGGCT	GGACCGGGCC	ACCCAGTTCG	26200
		CGCTGGTCGC	CGCCCGCGAA	GCACTGGAGG	ACAGCGGCCT	CGCCGGCGAC	GGGCCGGACC	CGTGCCGCAC	GGGCGTCACG	CTCGGCAGCG	CGGTCGGCTG	26300
		CACCACGAGC	CTGGAACGCG	AGTACGTCGT	CACCAGTCAC	GGCGGCCGCG	ACTGGCTCGT	CGACCCGGAC	CTCGCGGTCC	CGCACCTCTA	CGACTACTTC	26400
		GTCCCCAGCT	CCATGGCCGC	CGAGGTGGCC	TGGGCCGCCG	GCGCGCAGGG	сссстостсс	GTGGTCTCCA	CGGGCTGCAC	CTCCGGGCTC	GACGCGGTCG	26500
		GCCACGCCGT	ACGGCTCATC	GAGGAGGGCT	CGGCGGACGT	CATGGTCGCG	GGCGGTACCG	ACGCGCCCAT	CTCGCCCATC	ACGGTCGCCT	GTTTCGACGC	26600
		GATCCGGGCG	ACCACGCCCC	GCAACGACGA	ACCGGCCACC	GCCTCCCGCC	CGTTCGACCG	CACCCGCAAC	GGCTTCGTCC	TGGGCGAGGG	СТGCGCCGTG	26700
		ттсбтсстбб	AGGAACGGGA	GCGGGCCAGG	GCCCGCGGTG	CCCATGTGTA	CGCCGGTGTC	GGCGGGTTCG	CCTCGCGGTG	CAACGCCTTC	CACATGACCG	26800
1		GACTGCGCCC	GGACGGCAAG	GAGATGGCCG	CCGCCATCGA	GACGGCCCTG	GACGAGGCCC	GGGTGCGCCC	GGACGAAGTG	AGCTACGTCA	ACGCACACGG	26900
▼		CTCCGGCACC	AAACAGAACG	ACCGGCACGA	GACGGCCGCG	TTCAAGAAGG	CGCTGGGCGA	CCACGCCCGC	CGTACGCCCG	TCAGCTCCAT	CAAGTCGATG	27000

Stopp ATCGGCCACT CGCTCGGCGC CATCGGATCC GTCGAACTCG CGGCCTGCGC GCTCGCCATC GAGAACGGCG CCGTCCCGCC GACGGCCAAC CTGTACGAGC 27100 pokP1 27200 CGGACCCGGA ATGCGACCTC GACTACGTGC CGTTGACGGC ACGCGAGGCC CGGCTCGACG TCGTCCTCAG CGTCGGCAGC GGATTCGGCG GCTTCCAGAG Start pokP2 CGCGATGGTG CTCACCCGTC CCGGTCGGGC GGAACAGTGA ACGCTGTCGT CGTCACGGGC CTGGGCGTCG TCGCGCCGAA CGGCCTGAGC ACCGAGGAGT 27300 27400 ACTGGAACGC CACTCTCGCG GCCCGCTCCG GCATCGGCCG CATCACCCGC TTCGAACCCG AGCGCTACCC CGCCACCCTG GCCGGCGAGA TCCGCGGCTT 27500 CGAACCCGCC GCCCATCTGC CGGGCCGCCT CGTCCCGCAG ACCGACCACT CCACCAGGCT CTCCCTGGTC GCCGCCGACG AGGCCGTCCG CGACGCCGGC 27600 CTGGACACCG GACAACTGCC CGAGTACGGC GTGGGCGTGG TGACCGCGGAA CAGCGCGGGC GGCTTCGAGT TCGGTCACCA GGAACTCGAC AACCTGTGGC GCAAGGGACC CGAGTACGTC AGCGCGTACC AGTCCTTCGC CTGGTTCTAC GCGGTCAACA CCGGACAGAT CTCCATCCGG CACGGCCTGC GCGGCTCCAG 27700 CGGGGTGCTG GTCGCCGACG AGGCGGGCGG CCTCGACGCG CTCGCCCAGG CCAGGCGGCT GCTGCGCCGT GACCTGGACG CCGTGCTCAC CGGCGCGGTC 27800 27900 GACGGCTCGC TGTGTCCCTG GGGCTGGATC GCCCAGACCT CGACCGGGCA GCTGAGCACG GCCGAGGACC CGGCTCTCGC GTACCGGCCG TTCGACGAGC 28000 GGGCCGCGGG CTTCGTGCCG GGAGAGGGCG GCGCCATCCT GGTCGTCGAG GACGAGGCGA AGGCCCGCGC GCGGCACGCA CCCCGGATCC ACGGCAGGAT 28100 CCTCGGACAC GCCGCCACGT TCGACCCGAG ACCGGGCACC GTGCCCGCGG ACGACGCGTC CGCCCTGACC AGGGCCGTCG AACTCGCCCT CGCCGACGCC 28200 GGTGCCGTGC CCGATGACAT CGATGCCGTC TTCGCCGACG CGGCCGGTGT CCCGCACCTG GACCGGGCGG AGGCCGCCGC GCTCGGCGCG GTCTTCGGCG 28300 CGCGCGAGCT CCCGGTCGCC GTGCCCAAGA CGCTGACCGG ACGACTGTGT GCGGGCGCAG GTCCCCTCGA CGTCGCCACC GCGCTGCTCG CCCTGCGCGA Stopp CGGGGTCCTT CCCCCTGCGG CACACACCCA GCCGTCCCCC CGGTACGGGC TCCGTGTGGT CGTCGGCCGG CCGCTGGAAC TGCGCCTGCG TGCCGTGCTG 28400 Start pokP2 GTCGTCGCCC GCGGCCTCGG CGGCTTCAAC TCCGCGATGG TCGTGGGCGC CTCCCACTGA GCCCTGACCA CGCTCGGCAA CCCCACTAGG AGACCCAGCC 28500 pokP3 ATGCCAGAAC TGACCATGGG AGAGCTCACC CGCATCCTGC GTGAGTGCGC GGGCGAGGGC GAAGGCGTCG CCCACGACGG GGAGTTCGCG GACACGCTCT 28600 28700 TCACCGACCT CGGCTACGAC TCGCTGGCCG TACTGGAGAC CGCGTCCCGC CTCAAACGGG ACTACGGCGT CGAGCTGACC GACGACGAGG TCGTCGACGT 28800 CGGCACCCCG GCCCGGCTCC TCGAACTGGC CAGGCGCCAG ATCGCCGCGC GTTCATGAGC GCCCCGGCCG AGACGACCAC GCCCGCGGCC TGGTGGCTGT Stopp 28900 GCGACCACTG CCGACGGCCT GTCTACGCCA AGCGGCTCGC CCGGTCCTCC GGTGTGTGCC CGGAGTGCGG CCACCACCGG AGACTGTCGG CCCCGGAGCG Start pokP3 29000 GCTCGACCAG CTGCTCGACC CGGGGTCGTC CCAAGCCCTG GGCGTGCCGC GCACCGCCGA CGACGTCCTC GGCTTCACGG ACACCCGGCC CTACCACGAG pokAC1 29100 CGACTCGCCG AGGCGCGCGA CCGGACCGGA CTCGACGACG CCGCGATCGC CGTCCGCGGC CGGATCGGCG GTTGCGAAGT GGCGGTCGTC GCCATGGAGT TCGGCTTCAT GGGCGGCAGC CTCAGCGGCG GCGTCGGCGA ACTCATCACG CTGACCGCCG AGACGGCCCT GGCCGAACGG CGCCCGCTGG TCATCGTCTG 29200 CGCGTCCGGG GGCGCCCGGA TGCAGGAGGG CCTGATCTCG CTGATGCAGA TGGCGAAGAC GAGCCAGGCC CTGCTCGCCC TCGACGAGGC CGGCATCCCC 29300 29400 ACCGTCTCCG TCATCACCGA CCCGGTGTAC GGCGGAGTGG CCGCCTCGTT CGCCACGCTC TGCGACGTGA TCGTGGCCGA ACCGGGAGCC CGCATGGGGT 29500 TCGCGGGACC GCGCGTCATC GAGCGGACCA TCGGCGAGCG GCTCCCGGAG AACTTCCAGC GCGCCGAGTT CCTCCGCGAG CATGGTCAGG TCGACGTGGT 29600 CGCACCGCGC CAGGAACTGC GCGCGACCCT GATCCGGCTG CTCCGCGCGC TGGCTCCACC GCGGGACACC CGGGCGGGAC GTCCTCGGGC GGAACAGGCC GAGCCGGAGT CCACCGGCAC GGCACTCGGC GCACCGGACC CCGGCCTGCT CACCCGTCCC GAACAGGTCC CCGACCTCGA CCCCTGGCAG GCGGTGCGCC 29700 29800 TGGCGAGGAA CCTCGAACGC CCCACCGCGC TCGACTACAT CGCCCTGCTC GTCGACGACT TCCAGGAACT GCACGGTGAC CGGCTCGGCG GCGACTGCCC 29900 GGCCACCGTC GGAGGAGTCG GCCTCCTCGA CGGCCGGCCC GTGATGGTGA TCGGCCAGCA GAAAGGACAC ACCGCGGCGG CGCTGCGAGA ACGGAACTTC 30000 GGCATGCCGG TGCCCGCCGG CTACCGCAAG GCCGCCCGGC TGATGCGCCT GGCCGCGAAG GTGGGCATCC CGGTGCTCAC CCTCGTCGAC ACCAGCGGTG CCTTCCCCGG CATCGAGGCG GAGCGCGGGG GCCAGGCCGT GGCCATCGCG GAGAACCTGC GGCTGATGTC CGGGCTGCCC GTGCCGATCG TTGCTGTGAT 30100 30200 CGTCTCGGAG GGCGGCAGCG GCGGCGCCCT GGGACTCGCC GTCGCCGACC GGGTGCTCGC GCTCAGCAAC GCCGTCTACT CGGTGATCAG CCCGGAGGGA

137

	Stopp	TGTGCCGCGA	TCCTGTGGCG	CGATCCCGGG	GCGGCACCGC	ATGCCGCTCG	TGAACTCGGT	CTGCACGCAC	GGGAGTTGCT	TGCACAGGGG	GTGGTCGATG	30300
e	pokAC1	GAGTCGTCCT	CGAACCCGAG	GGCGGCGCGC	AGAGCGATCA	CCGCGTCGCG	GCGGAGCGCC	TCGCCGGCGC	CGTACGGCCG	CTGCTGGAGG	AACTGACAGT	30400
Start		GCTGACCACC	GATCAACTGC	TGGCCGGACG	ACGGGCCCGC	TTCCGCGGCT	TCGGCAGCCC	GGCACCGGCC	GGCCGCCCCG	CGCCGGAAAG	G <u>TGA</u> TGAG AT	30500
pokAC3		GCCCACGCCC	GACAGCGTCG	CCACCCTCGA	CGCCCTGCTG	AGTGACGGAC	GCCCCGACAG	тсттссстсс	GTCCTGGAGG	CCGCCAAGAC	GAGCATGATC	30600
		GAGCTCTTCT	CGGAGGCTCC	CGTACCGCCG	TCCGCCGTCC	GCGTGACGGT	CGGGCCGGTC	ACCATCGAGA	TGGACTGGCC	GGGCGGGACC	GGCGCAGGCA	30700
		CCACGGCGCC	GCAGCTCGCA	GTTCCCTCGC	AGGCAGGGAC	CGCACCGGTC	GCGACGCCCG	CGGCGTCGCC	GACCGGACAG	CCCCCGCTCG	ACCACATCCA	30800
•		CGCCCCGACG	GTCGGGGTCT	TCTACCGCGC	GCCCGAACCG	GGTGCCAAAC	CCTTCGTGAC	CGAGGGTGAC	ACTGTCGTCC	CCGGTCAACA	GGTGGGCCTC	30900
Stopp		ATCGAGGCGA	TGAAGCTGAT	GATCCCCGTC	GAGTCGGACC	GGCACGGTGT	CATCGGCGAG	TTCCTCCAGC	CCAACGCGGG	CCTCGTCGAG	TACGGCGACC	31000
pokAC3	Start	CGTTGTGCTC	CCTCGTCCCG	GCCGACGGGC	GG <u>TGA</u> GGCGC	A GTG TTCCGC	ACCGTCCTCG	TCGCCAACCG	GGGCGAGATC	GCCCTGCGTG	TCGCGCGCGC	31100
	pokAC2	CTGCCGTGAA	CTGGGGATCA	GGGTCGCCGT	CGTGTACTCC	ACCGAGGACA	CCGACAGCGA	GGTCGTGCGG	TACGCCGACG	AGGCGGTCCG	CATCGGCCCG	31200
		GGGTCGGCGC	AGGCGAGCTA	CCTCAGCATC	CCCGCCGTCA	TCGAGGCCGC	CCGGCGCGTC	GGCGCGGACG	CGATCCACCC	CGGGTACGGA	TTCCTCTCCG	31300
		AGAACGCCGA	CTTCGCCGAG	GTGTGCGCGG	CCGAGGGCAT	CACCTTCATC	GGCCCGCCCC	CGGAGGTGAT	GGAGGCGCTG	GGCGACAAGT	CCACCTGCCG	31400
		CGGCCTCATG	GCCGACGCGG	GGCTGCCCCT	GCTGCCCGGC	ACGCTGGACC	CCGTGTCGTC	GCCGCGCGAG	GCCGAGGCGT	TCGCCGCCGA	GATCGGCTAC	31500
		CCGGTGGTGG	TGAAGGCGGT	GGCCGGGGGC	GGCGGCCGCG	GGATCGGAGT	GGCGCACTCG	GCCGACGAGT	TCCCCGCCGT	CTACCGGGAG	ACGCGACGCC	31600
		ACGCCGCCGC	CGTGTTCGGG	GACGGCAGGG	TCTATCTGGA	GCGCTATCTG	CAGTCCGCAC	GGCACGTGGA	GATCCAGATA	CTCGCCGACC	GCTTCGGCAA	31700
		TGTGATCCAT	CTCGGCGAGC	GCGACTGCTC	GGTGCAGCGC	CGCCATCAGA	AGCTCATCGA	GGAGACCCCG	GCTCCCGGGC	TGGACCGCGA	TGTGCTCGCC	31800
		GCGATGGCGG	AACACGCCGT	GCAGGGAGCC	AAGGCCGCCG	GATACGTCGG	CGCGGGGACC	TTCGAGTTCC	TGTACGACGA	CAGCGGACGC	TTCTACTTCA	31900
		TGGAGGTCAA	CTGCCGTATC	CAGGTCGAGC	ATCCGGTCAC	AGAAATGGTC	ACCGGCGTCG	ACCTGGTCCA	TGAGCAGCTG	TGGGTCGCCG	CCGGGCATCC	32000
		GCTGCGGCTC	GGCCGGCGTG	ACGTCGTGCC	CCGCGGGTGC	GCCGTCGAGT	GCCGTATCAA	CGCGGAGGAC	GCCGACCGGG	ACTTCACCCC	GACGCCCGGG	32100
		CTCATCGACG	AACTCACCCT	GCCGGCGGGC	CCGTTCGTGC	GCGTGGACAC	GCATGTGCGG	GACGGCTCGC	GCATCTCCGT	CTTCTACGAT	CCGCTGCTCG	32200
		CCAAGGTCGC	CGTCTGGGCC	CCCGACCGGG	AGCTCGCGCT	GGCCCGTATG	CGCCGTGCCC	TGGACGAGGT	CCGGATCGAG	GGCAAGGGCA	TGCACACCAC	32300
	Stopp	GGCGGGTTTC	CTCCGCTCGG	TCGTCGAGAG	CGACGAGTTC	AGCACGGCCC	GGCACGACAC	CGGGCTCGTC	GGCCGGCTCC	TGGAGCCCGA	GCCGGCTGCC	32400
Start	pokAC2	GCAGGGACCC	GGGACCCGGG	GCCCTCGCAG	GCGCAACCAC	CGAACGCCTC	G <u>TAG</u> GGAAGG	TTCAGCTC AT	G AAAGCGCTC	GTGCTTTCCG	GCGGTTCAGG	32500
nokS1		AACCCGGCTG	CGGCCGATCA	CCCACACGCT	GGCCAAACAA	CTCGTGCCCG	TGGGCAACAA	ACCGGTGCTG	TTCCACGGCC	TGGAAGCGAT	CGCCGCCGCG	32600
		GGGGTGACGG	AGACCGGCAT	CGTCGTCGGG	GACACCCGTG	CCCAGATCGA	GGCCGCGGTC	GGCGACGGAT	CGCGGTTCGG	CCTGGAGGTC	TCCTATCTGT	32700
		GGCAGCGGCA	GCCGCTCGGT	CTGGCCCACG	CTGTGAAGAT	AGCCCGTGAC	TTCCTCGGTG	ACGACGACTT	CGTGATGTAT	CTGGGGGACA	ACATCGTCTT	32800
		CGACGGCATC	ACCGACTTCG	TGGAGCGGTT	CCGGGTCCAT	CGGCCGGCCG	CGCAGATCAT	GCTCGCCCAG	GTCGACGACC	CCCGGCAGTT	CGGCGTGGCC	32900
		GAGGTGTCCG	CGGAGGGCCG	CGTCACGGGG	CTCCAGGAAA	AACCGCGCCG	GCCGCGGAGC	GATCTCGCCG	TCGTGGGCGT	CTATCTGTTC	AGCTCGGCCG	33000
		TGCACAAGGC	GGTCGCCGAG	GTGGAGCCCT	CGGCGCGCGG	CGAACTGGAG	ATCACGGATG	CGGTGCAGTG	GCTCATCGAC	CACGACCTGC	GGACCGACGC	33100
		CGCCGTCATG	ACCGGCTGCT	GGAAGGACAC	GGGAAACGTG	CCGGACATGC	TGGAGGTCAA	CCGGCTGGTG	CTGCGATCCC	TCGATCCCTC	CAGCGCCGGG	33200
		ATCGTGCGCG	ACAGTGAGAT	CAGCGGCCAG	GTGGTCGTCG	AGCCGGGGGGC	GCGGGTGACC	GGTTCCGTGG	TCGTCGGCCC	GGCCGTGATC	GGCTCGGGAG	33300
V		CGACCGTCAC	CAACTCGCGT	GTCGGCCCGT	ACACCTCGAT	CGCGGAGGAC	TGCCGTATCA	CCGACAGCTG	GATCCGCGAC	TCGATCGTGA	TGCCCCGTGC	33400

Anhang

Stopp Aggccgtgca gagccggatg atgctctccg ccgacagcct ggccaccttc ctgcgtccca agctggtgatg cgcaccccga tcggcgccaa 39100 pokO1 GTTCACCCAG CGGATCGCCT TCGGAGCCCC GGGCATCCGC GTCGCCGACA ACCTCTTCAC CGTCAACGAG AAAGAGTGAT CGCGGATGAG ACTGGTCGAC 39200 Start 39300 CTGTCGTCAC CCGTCGACGC CCGGGGCTGG GAGCCCGAGC CGGTGACCCA CGAGGTGATC ACACCGGCCG AGGGCGCCCG GCACATGGCC GACGAGATGC pokC2 GTGAGCACTT CGGCATCGAC TTCGACCCGA GCGTGCTCGA CGACGGCGAA CTGCTGTCGA TCGACACGCT GCGGCTCACC TCCCACACCG GTACCCACAT 39400 CGACGCGCCG GCCCACTACG GGACCCGCGC CTCCTACCGC GAGGGTCCGC CCCGTACCGT CGACGAGCTC CCGCTCGACT GGTTCCACCG GCCCGCCGTC 39500 GTCCTCGACC TCACCGACGC CGAGCCGGGC GCCGTCGGGG CCGACCGCAT ACGAGCCGAA CTGGACCGGA CGGGTGTCGA GCCGGCACCC CTGGACATCG 39600 TGCTCCTGCA CACCGGGGCC GACCGGTGGG CCGGCACGGA GAAGTACTTC ACCCACTTCA CGGGACTCGA CGGACCCGCC GTGCACCTCC TGCTCGACCT 39700 GGGGGTGAAG GTGATCGGCA CGGACGCGTT CAGCCTGGAC GCGCCCTTCG GCGACATCCT GCGACGGTAC CGGCAGACCG GGGACCGCTC GGTCCTGTGG 39800 Stopp CCCGCCCACT TCACGGGGCG CGACCGCGAG TTCTGCCAGA TCGAGCGTCT CGCCAACCTG GACCGGCTGC CTCCGCACGG CTTCACCCTC TCCTGCTTCC 39900 pokC2 40000 CCGTGAAGAT CGCTGGAGCC GGAGCAGGCT GGACCCGCGC GGTCGCTTTC ATCGACGACG ACGAGGGC**TG A**CGGACA**TG**A CCGACGACAT CCAGGTGCAT Start ACGCGCGGGG CCCAGGCGGC GCCGGGCGAG AGCGACGCGG GCGACACCGG GCCGGTGGCG GCGTACTCCT TCGTCGACCG GCCGGACGTC CCGCCGCGCC 40100 pokMT3 40200 AGCGGCTCAT GCTGCTCGCC AACGGGCAGC GCTTCTCCGC CGTCGTGTAC GCGCTCGCCG AACTCAACGT CGCCGACCAG CTGGTCAAGG GACCCCGCAC GGTCTCCGAA CTGGCCGACG CGGTCGGCGC CGACGAGGCG GCGCTCTACC GCATGCTGCG CTGTGCCGCC CTGCTCGGTG TGTTCCAGGA GCTCGACGGG 40300 40400 CGGCAGTTCG CCCTCACCCC CCTCGCCGAG GGGCTGCGCA CCGACCTGCC CGACGGGGTG CGGGACGCCG TGCTGCTCGA CGGATCCGGT TTCTTCTGGG GCTCGTTCGG CTCGATCCTG CACTCCGCGC GGACCGGCCG GCCCGGCTTC GACGCCGCGC ACGGTATGTC GTTCTGGGAG TACCTCCAGG GCAACCCGGA 40500 GGCGGGCGAG GTCTTCGACG ACGCCATGAC CACCATCAGC CGGCGGCTCG GCGGGCTCTA TCTGGACCGC GTCGACTTCT CCCGGTTCCC CGTCGTCGCC 40600 40700 GACGTCGGCG GAGGCCGGGG CTACTTCCTC GCCGAGATCC TGCGGCGCAA CCCCGGCGTC CGCGGTGTGC TCTTCGACCG TGCGCAAGTA GCCGACACCG 40800 CAGGTGAGTT GCTGAGCGAG CGTGAGGTCG CCCACCGCGT GGAGGTGGTC GGCGGCGACT TCTTCACCGA CCCGGTCCCG GCCGGCTGCG ACGCGTACGT 40900 CCTGAAGACC GTGCTGCACG ACTGGCCGGA CGAGAAGGCC GTGGAGATCC TGCGCGGCGT ACGACGGGCC ATCGGCGACT CCGCGGCGCG CCTGCTCGTC Stopp CTCGAACAGG TCGTGGCACC CGGCAACACC TGGGACACCG CCAAGTTCCT GGACGTCGAC ATGCTCGTGG TGATGGGCGG GCGCGAGCGC AACCTCGACG 41000 **DOKMT3** AATGGCGCGC GCTGCTCGCC GCCGGCGGCT TCGCCCTGGA CTGCGAACCG GCCGTCGGCG ACTGGGCGGT ACTGGAATGC AGGCCGTGCT GAAGCGCTCC 41100 CCGGCCTGTC CGGCCGACCC GACCTACTCC GCCTTGGCCG ACCCGGCCGG CCAGGGCCCG GGCGACCCGC ACGACTCGGC ACCCACCCCG ATCACGGAGG 41200 Start ACAGGACCGT ATGACCGACA CCACCCTCGA CGCGGCGCCC GCTCAGGAGG CGCTCTACAC CGAGGTGCAG CAGTTCTACG CCCGCCACAT GCAGCTCCTG 41300 pokC1 41400 GACAGCGGCA GGGCCGAGGA GTGGGCGCAG ACCTTCACCG AGGACGGGGA GTTCGCGCCG GAGCACCGGC CCGAACCCGT CGTCGGCAGG ACCGCCCTGG CGCGCGCCGT GCGTTCCGCC CACGAGGCGC TGGTGGCCGC CGGCGAGGTG CGACGCCACT GGCACGGCAT GGTCGCGGTG GACTCCGCGG CCGACGGTTC 41500 GCTGCACGTT CGGTGCTACG CGCTCATCAT CGGCACCGTG CTGGGCGGCG ATCCCCAGGT CAGGATGAGC TGTGTGTGCG AGGACGTGCT CGTCCGCGAG 41600 Stopp GACGGCGAGC TGAAGGTCAG CCGACGGCGC GTGACCAAGG ACGGTGTGGG CGCGCCCGGC TGAGCGCGC CGCACGGGAA GGCCCCCGGG AATCTCTCCC 41700 pokC1 41800 GGGGGGCCTTC CCGTGTGGTC GGCGCCGGAG CGCGTCCGGC GCGGCCTCAG CGATCCTCGC CGACCGGCGC GTACAGGTCG GCGTCGGGCG TGGCGAGACC Stopp CCCCCGGAAG GGCACACCAG CCGCGGCCTC GCGCAGGCCG CGCCGGAGTC GCTAGGAGCG GCTGGCCGCG CATGTCCAGC CGCAGCCCGC ACCGCTCTGG pokO3 GGCCAGGCCG CGGACACGGT TGCGGAACTC CTCGCTCTGC ACCGCCCTTT TGTGCGAGTC GGGGTCGTCC CAGTGGGCGG TCTCCACGAA GATGTTCGGC 41900 CCGGTCCGGC GCCTGTGCCA ACGCCTTGAG GAGCGAGACG TGGCGGGAAA ACACGCTCAG CCCCAGCAGG GTCACCCGCC AGAGGTGCTT CTACAAGCCG TTGCTGATCG AGCGGTAGAC CTCGTGGCTG ATGAAGCCCG GCTGCGCCTG CATGTAGGCG CTGACCTCGG CGATGGCGCG CCGGAACGCG TCTACTTCGC 42000 AACGACTAGC TCGCCATCTG GAGCACCGAC TACTTCGGGC CGACGCGGAC GTACATCCGC GACTGGAGCC GCTACCGCGC GGCCTTGCGC AGATGAAGCG

4

				ATCAGGUICA	CCAIGGICGI	ACTCCTTGGT	Cagaarcaar	0010010000	IGICATECOC	GCGIGGCGAA	CAGITECGIG	42100
	pokO3	GGCAGTGGCA	CTTGAACAAC	TAGTCCCAGT	GGTACCAGCA	TGAGGAACCA	GCCCCAGCCA	CCACCAGGCC	AC <u>AGTA</u> GGCG	CGCACCGCTT	GTCAAGGCAC	
Stopp <i>pokPS</i>	penee	AAGAGCCGGC TTCTCGGCCG	GCAGGTCCTG CGTCCAGGAC	GCGGCGGACC CGCCGCCTGG	TTGCCGCCGC AACGGCGGCG	CGGACCGGGC GCCTGGCCCG	GATGTCGGGG CTACAGCCCC	ACCGCCCGGA TGGCGGGCCT	TGTGCCGGAT ACACGGCCTA	GTGCTGGTAG CACGACCATC	TACGGCAGGC ATGCCGTCCG	42200
1		CGGAGTTGAC GCCTCAACTG	GTCCGCGGCG CAGGCGCCGC	ATGCCGTCCA TACGGCAGGT	GTGCTTCGGG CACGAAGCCC	CTCCTCGGGA GAGGAGCCCT	CGACGGGTCA GCTGCCCAGT	CCACGAGGGC GGTGCTCCCG	GACCGCCACG CTGGCGGTGC	GCGCCGCTGA CGCGGCGACT	ACTCGTCCGG TGAGCAGGCC	42300
		GTGGTCGACG CACCAGCTGC	ACCGCGCAGT TGGCGCGTCA	CCGCCACGGC GGCGGTGCCG	GGGGTGCGCG CCCCACGCGC	AGCAGCACCT TCGTCGTGGA	GCTCGATCTC CGAGCTAGAG	CTGCGGGGAG GACGCCCCTC	ACCAGCCAGT TGGTCGGTCA	TGTCGCACTT ACAGCGTGAA	GAAGACGTCC CTTCTGCAGG	42400
		TTGAGCCGGT AACTCGGCCA	CGACGACGAA GCTGCTGCTT	GAGGCAGTCG CTCCGTCAGC	TCCTCGTCGA AGGAGCAGCT	CCTCGCCGAC GGAGCGGCTG	GTCCCCGGTG CAGGGGCCAC	GCGAACCAGC CGCTTGGTCG	CCTCGGCGTC GGAGCCGCAG	CAGGGCGCCG GTCCCGCGGC	CCGTCGGGCT GGCAGCCCGA	42500
		CGCCCAGGTA GCGGGTCCAT	GCCCTTCATC CGGGAAGTAG	AACTGCGGGC TTGACGCCCG	CGCGCACCTG GCGCGTGGAC	GATCTCGCCG CTAGAGCGGC	CGCTCACCGG GCGAGTGGCC	GGCCGAGTGC CCGGCTCACG	CTTGCCGGTG GAACGGCCAC	GCGAGGTCGA CGCTCCAGCT	CGATCCGGCA GCTAGGCCGT	42600
		CTCGGTGCGG GAGCCACGCC	GGGACCGGGG CCCTGGCCCC	GTCCGCACGA CAGGCGTGCT	ACCCTCCTTG TGGGAGGAAC	GGCCGGGTGC CCGGCCCACG	GGCTGCCGCA CCGACGGCGT	GTGGGTCATC CACCCAGTAG	GGCGCCGTCT CCGCGGCAGA	CGGCGAGCCC GCCGCTCGGG	GTACCCCTGG CATGGGGACC	42700
		AGGACCGGGA TCCTGGCCCT	TCCCGAAGTG AGGGCTTCAC	GTCGCCGAGC CAGCGGCTCG	CTGCGCGCCG GACGCGCGGC	CCGGGACCGC GGCCCTGGCG	CAGTGCGGAG GTCACGCCTC	CCGCCGGAGA GGCGGCCTCT	ACACGGCCTC TGTGCCGGAG	CACGGTGTCG GTGCCACAGC	AGCCGCAGCT TCGGCGTCGA	42800
		CCGACAGGTC GGCTGTCCAG	CGGTCGCGCC GCCAGCGCGG	GCGAGACGGC CGCTCTGCCG	TGAGCCGCAT ACTCGGCGTA	CGGCAGGCTG GCCGTCCGAC	TAGTACCGGG ATCATGGCCC	TGGCCCGCGC ACCGGGCGCG	CTCGTTCGCC GAGCAAGCGG	GTCCGCAGCG CAGGCGTCGC	ACGCCGCCAG TGCGGCGGTC	42900
		GTCCGGATCG CAGGCCTAGC	GTGGCCAGCA CACCGGTCGT	CCTGCTCGGC GGACGAGCCG	GGCCGCGAAC CCGGCGCTTG	AGCGCCGAGT TCGCGGCTCA	TCAGGTGCAT AGTCCACGTA	CGGGTGGAAC GCCCACCTTG	GTGGGCAGAT CACCCGTCTA	GGTTGACGGT CCAACTGCCA	CACCGAGCTG GTGGCTCGAC	43000
		TCGTCCAGAC AGCAGGTCTG	CGTGCGCGTG GCACGCGCAC	CACGGTCTGC GTGCCAGACG	GCCGCGTTGA CGGCGCAACT	CCGCCAGGTT GGCGGTCCAA	GTGATGGGTC CACTACCCAG	TGCCGCACGC ACGGCGTGCG	CCTTCGGGGC GGAAGCCCCG	GCCGGTCGTG CGGCCAGCAC	CCGCTGGTGA GGCGACCACT	43100
		AGTGGATGGA TCACCTACCT	CGCGACGTCG GCGCTGCAGC	TCGGGGCGCA AGCCCCGCGT			GGTCCGGTGT CCAGGCCACA	CCCACAGCGT GGGTGTCGCA		ATGTCCAGCG TACAGGTCGC	ACGGCACCGT TGCCGTGGCA	43200
		GTCGCCGAGC CAGCGGCTCG	TCGGCGGCGA AGCCGCCGCT	TCTCCTCCGT AGAGGAGGCA	CGTGAGCACC GCACTCGTGG	AGCCGTGCGC TCGGCACGCG		GACGAGGGCC CTGCTCCCGG	TCCAGACCCT AGGTCTGGGA	TCGCCCGGAG AGCGGGCCTC	GAAGGGATTG CTTCCCTAAC	43300
		ACCGGCACGA TGGCCGTGCT	CGACATGGCC		GTGCCGTAGT CACGGCATCA	ACGCCACGGC	GAAGTCGGGA	TGGAGGACCG	AGGTGATCGC	GACGGTCGTG		43400
		CCACCAGAGC	GCGGATGCGT	GCCGCGCAGC	CGCTCACCCG	CTGCTCCAGC	TCCCCGAAGG		GCTGCGGTCC	GTGCGCAGGG	CGACACGGTC	43500
Start		GGGGTGGGCC	TCGGCGGCGA	GCCGCGGCAG	CTCGTCCAGG	CGCTCGACGG	GCTCACGCAC	GCGCCTGCTC	CTCCGCGAAC	TCCTTGGACA	GCCGCAGGTT	43600
μοκμο	Stopp pokC3	GGTCATGGAG		GCACCCGGCG					AGGATCGGCA	GCGCCGACGG		43700

143

CGGGGCGGAC CAGGAGCCAT CCGCCGGGGG ACAGGCCGAG CCGTTCCGAG ACCCGTCCGT CGCTGTCGGG GATCATCTCC GGGTCGGTGG CCGACTTCGC 45500 GCCCCGCCTG GTCCTCGGTA GGCGGCCCCC TGTCCGGCTC GGCAAGGCTC TGGGCAGGCA GCGACAGCCC CTAGTAGAGG CCCAGCCACC GGCTGAAGCG CTCCGTGACG CTCAGCACCG ACAGCCAGCC GCCGTGCTCC TGCCGTGCCC GGCCGACCG GTCGGCGACG GCGGGCTCGT GCGGCGCCGG GGCGGTCAGC 45600 GAGGCACTGC GAGTCGTGGC TGTCGGTCGG CGGCACGAGG ACGGCACGGG CCGGCTGGCG CAGCCGCTGC CGCCCGAGCA CGCCGCGGCC CCGCCAGTCG AGCAGCCAGC CGGGCCGGCG CAGTGCCGTG AGCAGTGCGG GCCAGCCGGT GCCCGTGAGG TCCGAGTCGG TGACCTCGGT GAGCCGGGTC CCCGGGCGGG 45700 TCGTCGGTCG GCCCGGCCGC GTCACGGCAC TCGTCACGCC CGGTCGGCCA CGGGCACTCC AGGCTCAGCC ACTGGAGCCA CTCGGCCCAG GGGCCCGCCC GGCCGCTGCC GCCGCCGGTG TCCGCGACGG TCAGCGAACG GTCCGCGTAC GAGAGCAGCA GCCCCGACAT CCCGCCGAGC ATCTCCCGCT GCATCCGCCT 45800 CCGGCGACGG CGGCGGCCAC AGGCGCTGCC AGTCGCTTGC CAGGCGCATG CTCTCGTCGT CGGGGCTGTA GGGCGGCTCG TAGAGGGCGA CGTAGGCGGA GCGGATGGGG GCGACCCGGC TCACCACCCC GAAGATCACG GGCAGCGCCA GGTCCGTGAA CCGGCTGCGC AGCTCGATCA TCTGCGTGGC CTTCTTGGTG 45900 CGCCTACCCC CGCTGGGCCG AGTGGTGGGG CTTCTAGTGC CCGTCGCGGT CCAGGCACTT GGCCGACGCG TCGAGCTAGT AGACGCACCG GAAGAACCAC GACTCCAGGA GGGCCTCGCC CACCGGCACG CGCTCGCTGG TGTAGCTGTC CAGCAGCTCC GCACGGGCAT GTCCGTCGAT GACCATCGCG AGCTTCCAGG 46000 CTGAGGTCCT CCCGGAGCGG GTGGCCGTGC GCGAGCGACC ACATCGACAG GTCGTCGAGG CGTGCCCGTA CAGGCAGCTA CTGGTAGCGC TCGAAGGTCC CCAGATTGAC GGCCTCCTGG ATGCCGGTGT TCATGCCCTG CCCGGACGCC GGGCTGTGCA CATGGGCCGC GTCGCCCGCC ACCAGGCAGC GGCCCACGCG 46100 GGTCTAACTG CCGGAGGACC TACGGCCACA AGTACGGGAC GGGCCTGCGG CCCGACACGT GTACCCGGCG CAGCGGGCGG TGGTCCGTCG CCGGGTGCGC CATGGCCGGG ACCATGCGCT GCTGCGCCGT GAAGACGGAC ACCCAGGTCG GGGTGCCGAT CCGTACCCGG TGGCCGATGC CCTGGCTGAG CTTGCGCTCG 46200 GTACCGGCCC TGGTACGCGA CGACGCGGCA CTTCTGCCTG TGGGTCCAGC CCCACGGCTA GGCATGGGCC ACCGGCTACG GGACCGACTC GAACGCGAGC AAACGCGCCG CGAGACGGCC GGGGTCGCCG TCGTAGTCGG TCTCGGCGGT GTCCAGCAGC CGCCACCGGT CGTCGGCGAG GGGCACCGCC ATGAGGGTGC 46300 TTTGCGCGGC GCTCTGCCGG CCCCAGCGGC AGCATCAGCC AGAGCCGCCA CAGGTCGTCG GCGGTGGCCA GCAGCCGCTC CCCGTGGCGG TACTCCCACG CGCCCTCGGC GCGCACCCAG TAGATGCTGT TGGGCGGCAG CTCGCTGGTC AGGGGTGCGT CGGCCAGCAG CCAGGTCTGG TTGGCCTCGC CGATCAGCGG 46400 GCGGGAGCCG CGCGTGGGTC ATCTACGACA ACCCGCCGTC GAGCGACCAG TCCCCACGCA GCCGGTCGTC GGTCCAGACC AACCGGAGCG GCTAGTCGCC GAGTTCCAGG GAACGGCGTA CGGTGCTGTG CCCGCCGTCG CAGCCGACCA GCCACGGGGT GCGCACGGTC TCCCGCCGGC CGTCGGCATG GGTCAGCCCC 46500 CTCAAGGTCC CTTGCCGCAT GCCACGACAC GGGCGGCAGC GTCGGCTGGT CGGTGCCCCA CGCGTGCCAG AGGGCGGCCG GCAGCCGTAC CCAGTCGGGG ACCGTCACGC CGTCGTCGTC GCGCGCGATC CGCTCCAGCT TCGTACCCCA TTCGGGGACC ACTCCGAGGT CCGCGAGCGC GTCGCGGAAC ACCTCCTCGG 46600 TGGCAGTGCG GCAGCAGCAG CGCGCGCTAG GCGAGGTCGA AGCATGGGGT AAGCCCCTGG TGAGGCTCCA GGCGCTCGCG CAGCGCCTTG TGGAGGAGCC TCGCCGTCTG CTCGATGGCG AGCGTGAAGG GGAACCGGGT CGGCATCGTC GAGTAGTCCG CGTCSAGGCG GGCGAGCCGG CGACCGTCCT GGAAGAGGGT 46700 AGCGGCAGAC GAGCTACCGC TCGCACTTCC CCTTGGCCCA GCCGTAGCAG CTCATCAGGC GCAGSTCCGC CCGCTCGGCC GCTGGCAGGA CCTTCTCCCA GAAGGCCCGG ATCTCCCGGC CCGCTTGAGC ATCTCYTCGA CCAGGCCCAT TTGTTGTACG CCTCCAGGTG CGCGGATGCG TGGCGACGGC GCGGCTGGTG 46800 CTTCCGGGCC TAGAGGGCCG GGCGAACTCG TAGAGRAGCT GGTCCGGGTA AACAACATGC GGAGGTCCAC GCGCCTACGC ACCGCTGCCG CGCCGACCAC TTCGCGGGCG CGTCCTTCGC GTCGAATGAG ACGCAACGGA TTCCGCGGCG GGCGAGTTCG AACGCCAGGG CGAGCCCCAC CGGGCCGGCC CCCGCCACGA 46900 AAGCGCCCGC GCAGGAAGCG CAGCTTACTC TGCGTTGCCT AAGGCGCCGC CCGCTCAAGC TTGCGGTCCC GCTCGGGGTG GCCCGGCCGG GGGCGGTGCT Start GTACCTGGGG AGTGCGAGGT CCTTTCGTCA CTGCCATCCG ATCCTCTGCT GCCGAAGGTC ATCCGCTGCT GCCGAAGGTC ATCCGCGCCC CAGGCTCGGG 47000 pokO2 CATGGACCCC TCACGCTCCA GGAAAGCAGT GACGGTAGGC TAGGAGACGA CGGCTTCCAG TAGGCGACGA CGGCTTCCAG TAGGCGCGGG GTCCGAGCCC 47100 CACCCTGCTG GAGCCCCCCT CGACTCGTGG TCGACGGGGC GGCGGACCGG TCGACGGGTC CTCGACCCGG GCTCCAGAAG TCCCCGCAAG GGTGAGGGCA 47200 TGCGCACTGC CTGGTACGAC CTCGACTTCG CCCGTGCGCT CGGGCGCCGC ATCGGACGGG GCCTGTGCAC GCGGCTGGCG GGGCTCGGCC TGGCCGCCGG 47300 CCCGATGGCA CCGGACCCGG CGCTGCTGGA CGGGGATCCG CGCACGCCGC CGTACGGGGA CGACAGGGAC AACGGGGATA CGCCGCACAG GGACCTGGAG

144

Start GTTCGATGAA CACCGACGTC GTCGTGGTCG GAGGGGGCCC GGTCGGTCTG CTGCTCGCCG CCGAACTGCG GCTCGGGGGC GCCCGCGTGG TCCTCCTGGA 47400 pokO4 47500 GCGGCTGACG GAGCCGAGCG GGCACTCCCG GGCCTTCCGC ATGCAGGCGA GGATGCTGGA CGTCCTGGAC CAGCGAGGCC TGCTCGACCG GTTCAAGGAG 47600 GGCAACCGGA CCTGGCCGAA AGCCCATTTC GCGGGCCTGG AACCGTTGCT CGACTTCGGG CACCTGCGCA ACGAGCACCC CTACGCCCTG CTCATCCCGC 47700 AGGCGCGCAC CGAGGAGCTC CTGGAGGAGC ACGCCCTGGC GTGCGGAGTC GAGATCCGCC GCGGGCACAC GCTCCGGGGG CTCGACGCCA CGCCCTCCGA 47800 CGTCGTGGCC GAGGTCGAGT CGCCCGAGGG CACCTACCGG TTGCGCTCCC ACTACCTGGT CGGCTGCGAC GGCGGTCGCA GCACCGTCCG CAAGCTCGCG 47900 GGCATCGGTT TCGGCGGCTC GCCGCCCACG GTCCGGGCGC TCCTCGCCGA CGTGGAACTG GCCGACCCCG GACAGCTGCC CAACGGAGTG CCGGGCACCA TGCGCACCCC CCGGGGTCTG CTGATGGCGA TCTCCCTGCA ACCCGGCGTG ACCCGGGTGC TCACCACCGA GTTCACCCCG CCGGAGCCCG GCTCCGAGCA 48000 CGCGCCGGTG ACCTGGACG AACTGCGCGA GACGGTGCGC AGGATCACCG GCATCGACGT CGCGATGGAC CGGCCGCGCT GGCTGTCCCG GTTCGCCGAC 48100 48200 ACGACCCGGC TGGCGGACAC CTACCGGCAG GGCCGCGTGC TGCTCGCCGG CGACGCGGCC CACGTGCACT TCCCCATAGG AGCGCAGGGC CTCAACCTCG 48300 GCCTCCAGGA CGCCGTGAAC CTCGGCTGGA AGCTGGCCGG GACCATCGTC GGATGGGCGC CGCCCGGACT GCTCGACAGC TACGGCTCCG AGCGCCGCCC 48400 GGTCGCCGGG CGCGTGCTGC GCGAGACCCG GGTGCAGCTC CTGCTCATGG CCCCCGACCC CAAGGTCGAC CCGCTCCGCG AGATGTTCGC GGAGCTTCTC 48500 GCGCTCCCCG AGGTCAACAG CCGTCTCGCG CACGAGATGA CAGGCCTGGA CGTCCACTAC GCCGCCGCCG CGGGCCGCTA CGAGCACGGC CTGCTCGGCC 48600 GCCCCTGCCC TCCGCTGCCG GCCTCGGTCG GTGACGAGGT CCGCACGGTC CTGCGCACGG GCCGCGGGGC ACTGCTCCTG CCGGAGGGCC CGGCCGAGGA 48700 GGCCGCGCGG CTCGCCACCG AGTGGTCGCA CCGCGTCGGC CGGGTCGCGA CCGAGGACGG ACAGGGCCTG CTGCTCCGAC CCGACGGCCA TGTCGCGTGG Stopp GTGGACCCCG GCGACGGGGT GCCCCGCAAG GACGTGCTGC TGGAGCTGGA GGACGCCCTG CGGCGCTGGT TCGGCGCTCC CGGCTGCACG GTCCTGTCCC 48800 pokO4 GCAACGACGA CACGGCCGGC AGGTGACCGG GATGCGTACG CGCAGGCTCG CGGTGGCAGG CAGCTTCGAG TTCACCCCCG AGATCCACAC GGACGCGCGG 48900 Start GGGCTGTTCG TGTCGCCCCT TCAGGAGGAG GCGTTCGTCG CGGCGGTCGG CGAGCCGTTC GTGACCGCGC AGACGAACCA CAGCCGCTCC GCCCGGGGCG 49000 pokS7 49100 TGCTGCGCGG GCTGCACTTC ACGACCACAC CTCCCGGCCA GGCCAAGTAC GTGTACTGCG CGCAGGGCCG GGCCCTCGAC GCGGTCGTCG ACATCCGGCT 49200 CGGCTCACCG ACCTTCGGCA AGTGGGACAT CGTGGAGATG GACGCCGTCT CCTACCGTGC CGTGTACATC CCCGACGGCG CCGGGCACGC CTTCCTCGCG 49300 CTCGACGACG ACACCGTGAT GTCGTACCTC GTCTCCAGCG CCTACCGGAC CGAACTGGAG CAGGCCGTCG ACCCGCTGGA CCCGGCCCTC GGCCTGCCGT 49400 Stopp ggccgtacga catggagttc gtcatgtcgg agcgcgacac gaccgccgtc tcgctcgccg aggcggaggc gcgggggatg ctgccccgct acgaggactg pokS7 CCGGCAGTGG CCCGCGGAAG CGGAACCCGG CCG<mark>GTGA</mark>GCG AGGCGCCCGC GAGAGGGCCG GCGCATCCG GCGCGAACGG ACGGGTCGCG GTCATCGGCG 49500 Start CGACCGGGTG CGTCGGCAGG CAGATCGCCG AGGCCTTCGC CGCCCGCGGC ACCGAAGTGG TCGCCGTCGC CCGCCGGCCC GCACCGCACG TGGCCGCCCA 49600 pokS9 49700 TCGGTTCGTC GCGCTGGACG TCGCCGCCGC ACCCGCCGAA CGGCTCGCCG AGCTCCTGGC CGCGCAGCGG GTGGACGCGG TGGTGAACGC GACGCTCGGC 49800 TGGGGCGAGG AACTGCACGC CATCAACGTC CACTTGGTGG AGCGACTGGT GGACGCACTG AAGAAGACGC CCGAGCCACC GCGCCTGGTG CAGCTCGGCA 49900 CCATCCACGA GTACGGGCCC GTCCCCCGGG GCACCTCCAT CGACGAGCGG GTCCGGCCGG ACCCGAGACA GCCCTATCCC CGGTCCAAGT TGGTGGCGGC CCGCCTGGTG CTCGACGCCG CGCGCCGG GGAACTCGAC GGTGTGGTGC TGCGCCTCAC CAACACCATC GGGCCGCATC CCGCCGCCGA GAGCTTCTTC 50000 50100 GGCTCCCTGG CCGCGCGGCT GCGCGACGAG CCGGGGACGG TCGACCTGAC GCTGGCCGAG GCGCACCGCG ACTACGTCGA CTCGCGCGAC GCGGCGGACG 50200 CGGTGGTGCT GGCCGCCGAA AGTCCCGCGG CCCACGGGGT GTTCAACATC GGTACCGGCC GCGCTCGCGA CATCCGGACC CTGGTCGCCG CGCTGGTCCG 50300 CGCCTCGGGG CGCCCGCCGG ACTCGGTGCG CGGGCACCCG GGAGCCGTGC ACAGCCGTGG CGCGGACTGG ATCCAGGTCG ACAGCACACG GGCACGGCGG Stopp CTGCTCGGCT GGAGCCCGCG CCACGACCTG GACGCGTCGA TGCGGGCGAT GTGGGAGACG GTGCGCGCCG AACGGGTCCC AGGGGCCCGG TGATCGGGCA 50400 pokS9 50500 GGGGCCCCGG ACGCACGGTG ACCGGGCAAG AGGCTCCAGG TGCACGGTGA CTGGACAAGA GGCCCCGGGT GCACGGTGAT CGAGGCCCGG CGGAGGAGTG 50600 GCGGTGGGCG TCGGAGGGGG CTCGGGAAAT CCCTCTGCCG CGTCATCGGC ATTCCCAAGT TCTGCAACAC GTTCTACTCT GTGCGCCGAC CAGCCGGGAG

Start AACCAGCTCG GGCACCGGGC AACAGGAGGC GCCGTGCATC TCGAATACAC GCCGGATCAG CAGCGTCTGC GCACCGAACT GCGCGACTAC TTCGCCCAGT 50700 DOKU3 TGGTACCCGA CAACGCCTAC GCCCGGTACG CCGACCCCGC CTCGCAGAAG CGGTTCTACC GCGAGACCGT CCGGCGCCCTG GGCGCGGACG GCTGGCTCGG 50800 GGTCGGATGG CCGAAGGAGT ACGGCGGGCG CGGGCTGACC CCCATGGAAC AGTTCATCTT CTTCGACGAG GCGGCCCAGG CGGGCGTGCC CCTGCCCCTG 50900 51000 ATGGCCCTGA ACACCGTCGG CCCGACGATC ATGCAGTTCG GGACGGAGGA ACAGAAGTCC CACTTCCTGC CCAGGATCCT CTCCGGCGAG ATCGACTTCG 51100 CGATCGGCTA CAGCGAGCCC GACGCGGGCA CCGACCTCGC CGCGCTGAAG ACCAAGGCGG TCCGCGACGG CGACGGCGAC TACGTCGTGA ACGGGCAGAA GATCTGGACG ACGAACGGCG ACACCGCCGA CTGGGTCTGG CTCGCCGTCC GCACCGACCC CGACGCCCCG CCGCACAAGG GCATCACCAT GCTCCTGGTG 51200 CCGACCTCCG ACCCCGGCTA CTCGTGCACG CTGATCAACA CACTCGCCTC GCACGACACC ACCGCCAGCT ACTACGAGAA CATCCGGGTC CCCGTCACCC 51300 51400 GCCGGGTCGG CGAGGAGAAC AAGGGATGGC GGCTGATCAC CAACCAGCTC AACCACGAAC GCGTGACGCT CGCCGCGCAC GGCACCATGG CGATCCGGGC CCTGCACGAC GTGCAGCGCT GGGCCATGGA GACCAAGCTC ACCGACGGCC GCCGCGTGGC CGACCTCCCG TGGGTGCGCC GCCGGCTCGC GCAGACGCAC 51500 ACCCGGCTCG ACGCCATGAA GCTGCTCAAC TGGAAGATGG TGAACGCCGT CCAGGAGGGC ACCCTCACCC CGCAGGACGC CTCCGCGGTC AAGGTGTACG 51600 51700 GCTCCGAGGC GCGCCGCGAC GCGTACGCCT GGCTGATGGA GATCGTCGCC GCGCCCGGGG TGCTCAAGGA GGGCTCCGCG GGAGCCGTTC TGCACGGCGA Stopp GCTCGAACGT GGTTACCGCT CCGCGGTGAT CTTCACCTTC GGCGGCGGCA ACAACGAGAT CCAGCGCGAG ATCATCTCGT GGATCGGACT GGGGATGCCC 51800 pokU3 CGGGTCCGGC GT**TAG**CCTGA CACG**GTG**GAG AGCACGTTCC CGGGCGACCC GGGACTCTTC GGCCCCGGCT CCGTGACCTG GCAGATGCAC GGCGACCCGA 51900 TGATGTGGGT CGCCGGCATC CGCGCGCTGT ACCTCCAGGC CCTGCACCCA CGCGTCGTGC GCGGGGTGAC GCAGAACTCC GACTTCCGGC GCGACGCCTG 52000 52100 GGGCCGGCTG ATGCGCACCG CGAACTTCGT CGGCACGACG ACGTACGGCA CCGGTGAGGC CGCCGAGAAG GCAGGGGCGA GGGTACGAAA GATTCACAGC 52113 ATGCTCACGA CCA

Start pokX

6.4.2 myo-Inositol-Metabolismus-Gensequenz

Sequenzabschnitt (6,9 kb) auf dem Cosmid CB30-4E08 aus S. diastatochromogenes Tü6028 mit myo-Inositol-Metabolismus-Genen

100 GATCGCCACC GGCGTCCGCG AACCGCACGC CTGCGCCCAG GCGTTGCTCG ACGCGGGCGT CGAACTCGCC GTCGTCAAAA AGGGCCCGGA CGGAGTCCTC GCCGTCCACC GCGACGGCAC CGTAGCCGAG GTCCCGCCCG TCCCCGTCGA GGTCGTCAAC GGCCTCGGCG CGGGAGACGC GTTCGGCGGC TCGCTCTGCC 200 300 ACGGTCTGCT GGCCGGCCTG CCGTTGGAGA AGACCATCCG GTACGCCAAC GCGGCCGGGG CGATCGTCGC GTCCCGGCTC GCCTGCTCCT CCGCCATGCC Stopp CACCGAGTCC GAGGTCGAGG ACCTTCTCGC GCGCGGCTGA CCGAGGCCAC CCCCGAACGG AGCCCGACTT GAGTATCAGC ATCCCCGACC TCGTCACGGT 400 orf2-A Start acgtgcccgg cacccggagg ccatcgcaga ggcggccgcc cgccgtgtcc gccgccgtt cgtcggcgac agcggccggc tgatgatcgt cgccgccgac 500 OFF2-B CACCCCGCCC GCGGCGCGCT CGGCGTCGGC GGTCACCGGC TCGCCATGGC GAACCGCGCG GATCTCCTCG AACGTCTCTG CGTCGCGCTG TCACGGCCCG 600 700 GCGTGGACGG GGTGCTCGGC ACCGCCGACA TCCTCGAGGA CCTGCTGCTC CTGGGCGTCC TGGAGGGAAA GGTCGTGATG GGCTCCATGA ACCGTGGCGG 800 GCTCGCCGGG TCGTCATTCG AGATGGACGA CCGCTTCACC GGCCACCGCG CCGAGGACAT CGAACGGCTC CGCTTCGACG CCGGCAAGCT CCTGCTGCGC ATCGACCACG ACGACCCCGG ATCACTGGAG ACCCTGGAGA GCGCCGCCCG TGCCGTCGAC GACATGGCGG CCCGGCGACT CCCGCTGTTC GTCGAGCCGT 900 1000 TCGTCTCGCG CCGGGTGGAC GGCACGGTCC GCAACGACCT CGGCGCCGAG GCCGTCACCC GTTCCATCGC CATCGCCTCT GGGCTCGGCG GCACCTCCGC CTACACCTGG CTCAAACTCC CCGTCACCAC CGACCCCGAC GACATGGCCC AGGTGCTGGA GACCTCCACC CTGCCCGCGG TGCTGCTCGG GGGCGATGTG 1100 Stopp GCCGGGGACC AGGAGGGCGC CTACGAGAGA TGGCGCAAGG CCCTGCGGCT GCCGACCGTC CAGGGCATGG TCGTCGGCCG GTCGCTGCTG TATCCCGCCG 1200 orf2-B AAGGCAGCGT GGAGACCGCG GTGGACACCG CGGTCGGGCT GCTCTGAACC ACCGTGCGGG AGCCTCCCGC CGGCCCTGCG CGGCAGCCGC TTGCCCGAAC 1300 1400 TCCGGGCAGG AGCAACCCGA TTGACGCCCT GCGCACGGCC TCCCGCCCGG TCCGGTGGGC GAGCCTCCCG CCCGGTCCGT GGACGAAGCC ACTCGCCCGA 1500 TCTTGTGGAC GAGCTTCCCG CTCGGTCCTG TGGACGAGGC ACCAGCCCAG TCCCGAGGAC TAGGCACCAG CCCGATCGGC GCACGAGCCA CCCGTCCGAA Start CCCCCTTGCC CGAGCCACCG CCCGAACCCC ATGCACGAAT CACCGTCCCA ACCCCCTTGC AGGAGCCGCC CGATGACCAC CGCGCACCAT CTCCCCGCGG 1600 orf2-C 1700 GCAAGGCCGC GACCGGCGCC TACGCCGTGG ACGTGAACCC CGGGTCGGCG GGCTGGGGCC ACTCCAGCCT GCGCGTGCTG GAACTGCCGC CCGGCGGCAC 1800 GCACGGCCTC GACACCGGCG ACAGCGAATG GATCGTGCTT CCGCTGTCCG GCGGATGCGC CGTCTCCGTC GACGGCGAAT CGTTCCCCTT GACCGGCCGG GCCGATGTCT TCAGCGGCGT CACCGACTTC GCGTACCTGC CTCGCGACGC CCACGTCTCG ATCGTCTCCG AGGGCGGCGG ACGGTTCGCG CTCACCGGAG 1900 2000 CCCGCTGCAC CCGCCGGCTG CCCGCACGCT ACGGCCCCGC CTCGAACGTG CCGGTCGAAC TGCGCGGCAG CGGCACCTGC TCCCGGCAGG TCAACAACTT CGCCGCCGCG GCCCCCGCCG GAGCCGGCCC GGAGTACGGG TTCGAGTGCG ACAGCCTCAT CGCCGTCGAG GTGATCACCC CCGGCGGCAA CTGGTCCTCC 2100 2200 TTCCCTCCGC ACAAGCACGA CGAGCACCGG CCGGGCACCG AGTCCGAACT GGAGGAGATC TACTACTTCG AGTTCGCCGG CCACCGGGGC ACGCCGGGCC TCGGCTACCA CCGCGTCTCG CCCTGGGGAG ACGGACGCGG CACGGACGTG CTCGCCGAGG TCCGCGACGG GGACGTCGTC CTCGTCCCCG ACGGCTGGCA 2300 Stopp CGGACCGTCC ATGGCCGTGC CGGGCCACCA CATGTACTAC CTGAACGTCA TGGCGGGACC CGGCACCGAG CGCGCCTGGC TGATCTGCGA CCACCCCGAC 2400 orf2-C Start CACGCCTGGA TCCGCGACAC CTGGGCCGAG CAGCCCGTAG ACCCCCGACT GCCCCTTAC ACCGCCCCCG AGAGGTCCCG ATGAGCCCCCA CCACGCGCCG 2500 orf2-D CCTGACGACC GCTCAGGCCC TGGTGCGCTT CCTGTCCGTC CAGTACAGCG AGCGCGACGG CGTACGCCAC CGGCTGATCG CCGGCACCTG GGGCATCTTC 2600 GGACACGGCA ACGTGGCCGG CATCGGACAG GCGCTGCTGG AGGCCGGCGA GGACGCCATG CCCTTCCACC AGGGGCGCAA CGAACAGGCC ATGGTGCACG 2700 CGGCCGTCGC CCACGCCCGC CAGCTCGACC GCCTCTCCGC GCAGGCCGTC ACCACCTCGA TCGGCCCCGG CGCCACCAAC CTCGTCACCG GCGCGGCCCT 2800 2900 CGCGACGATC AACCGGCTGC CCGTACTGCT CCTGCCGGGC GACTACTTCG CCGCCCGCTC CGCCGATCCA CTGCTGCAGC AGCTGGAGCA CCCCGTCGAG

		GCCGACGTCT	CCGTCAACGA	CGCACTGCGC	CCGGTCTCCC	GCTACTTCGA	CCGGATCACG	CGCCCGGAGG	CACTGATCCC	GTCCGCGCTG	AGCGCCATGC	3000
		GCGTCCTGAC	CGACCCTGCC	GAGACCGGCG	CCGTCACGCT	CGCGCTGCCC	CAGGACGTAC	AAGCGGAGGC	GTACGACTGG	CCCGAGGCGT	TCTTCGCGGA	3100
		ACGCGTGTGG	CCGGTACGCC	GTCCCGCGCC	CGACCCGGTC	GAACTCGCCG	AGGCCGTACG	GGCGATCCGC	GCCGCCCGGC	GCCCTCTCCT	CGTCGCGGGC	3200
		GGGGGAGTGC	ACCACAGCGA	GGCCGAGGAC	GCCCTCCTGG	CGTTCGCCGA	CGCCACCGGA	GTCCCGGTCG	CCTCCACCCA	GGCCGGCAAG	GGATCGCTGC	3300
		GCCACGACCA	CCCCGCCGAC	CTCGGCGGCA	TCGGCCACAC	CGGCACCGCC	GTCTGCGACG	CCGTCGCGCG	CACCGCGGAC	CTGGTCATCG	GCGTCGGCAC	3400
		CCGCTACAGC	GACTTCACCA	CCGCGTCCCG	GACACTGTTC	CAGAATCCCG	CCGTCCGCTT	CGTCAACCTC	AACATCACCG	GCCTCGACGC	CCACAAGCTC	3500
		GCCGCCCGGC	CCCTGGTGGC	GGACGCGCGC	ACCGGCCTGG	AGGCGCTGAC	CGCGGCCCTC	ACCGGGCACC	GCGTCGACCC	CGCGTACGAG	GCCGAGTACC	3600
		GCGAGGGCAA	ACGCCGTTGG	GAGGGGATCG	TCGGGGCGGC	CTTCCGCGCA	CCGGACGAGC	ACGCGGTCCC	GACCCAGACG	CAGGTCCTCG	GCGTCCTGGA	3700
		CTCCGTCGTC	GGCGACGACG	ACGTGATCGT	CAACGCGGCC	GGATCGCTGC	CCGGCGACCT	GCACAAACTG	TGGCGGGCCC	GCGGCCCGCG	CCAGTACCAC	3800
		CTGGAGTACG	GCTACTCCTG	CATGGGCTAC	GAGATCCCGG	CCGCCGTCGG	AGTCCAGCAG	GCCGCGCCGG	ACACCCCGGT	CTGGGCACTG	GTCGGCGACG	3900
		GTACGTACCT	GATGATGCCC	ACCGAGATCG	TCACCGCCGT	CCAGGAGCAC	CTGCCCGTCA	ACCTGGTGCT	GATCCAGAAC	CACGGTTACG	CCTCCATCGG	4000
		AGGCCTGTCC	GAGGAGACCG	GCGGCGAACG	CTTCGGAACC	GCCTACCGCT	ACCGCGCCCC	CGACGGCACC	TTCTCCGGCG	ACCCGCTCCC	GGTGGACCTC	4100
	▼	GCCGCCAACG	CCGCCAGCCT	CGGCATGGAC	GTCCTCCGCG	CCAAGACCGT	GGGCGAACTC	CGCCACGCCC	TCGCCGAAGC	GCGCGGCTCG	CAGCGGCCGA	4200
	Stopp	CCTGCGTGTA	CGTCGAGACC	GACCCGGCGC	CCACCGCCCC	GGCGGCCGAG	GCCTGGTGGG	ACGTGCCCGT	CGCGGAGGTC	GCCTCCCGCG	AACCCGCCGT	4300
	orf2-D	ACGTGCCCGT	GAACGGTACG	ACCGTCGGGC	CGCCGACCGC	CGGCACCACC	ТС <u>ТGA</u> АСТСС	CCGCCGCCCG	AGGACCCCCG	CACCGGGGGGC	CCGGTGGACC	4400
Start		GACCGTCAGG	AGGACACG <mark>AT</mark>	G CCAAGGGGG	CGAACCCGGC	AGGCCGCCGG	ATCCCCGCGG	GCGACGACCG	CAGTCCCGCC	CGCGGACCTC	GACTTCACGC	4500
orf2-E		TCGACCGGAA	CAGTCCCGTG	CCGCTCTACT	ACCAGCTCGC	ACGGCAGTTG	GAGGCAGCGA	TCCAGCGGGG	CACACCCGCC	GCCGGAAGCC	TGCTCGGGAA	4600
Π		CGAGGTCGAA	CTCGCGGGAC	GCCTCGGCCT	GTCCCGCCCC	ACCGTCCGCC	AGGCCATCCA	GACCCTGGTC	GACAAGGGAC	TCCTGGTCCG	TCGGCGCGGC	4700
		GTGGGTACGC	AGGTCGTGCA	CAGCCAGGTG	AAGCGCCCGC	TGGAACTCAC	CAGCCTCTAC	GACGACTTGG	AGAGCGCGGG	CCAGTGCCCC	ACGACTCTCG	4800
		TCCTGCACAA	CGCGGTCGAG	CCGGCGGACG	CCGAGGTCGC	CGCCGCGCTG	GGCATCGCGG	AGGGCGGCGG	AGTCCACCGT	CTGGAACGAC	TGCGCCTCAC	4900
		CCACGGCCGG	CCCGTGGCCG	TCCTGTGCAA	TCACATCCCC	GAGGGACTCC	TGGACCTCGA	CACCGCCCGG	CTGGAGTCGA	CCGGGCTGTA	CCGCATGATG	5000
- L		CGTGCGGCCG	GCATCACCCT	GCACAGCGCC	CGCCAGTCGG	TCGGCGCCCG	CTCGGCCGGC	GCCGGCGAAG	CGGAACGCCT	GGACGAACCG	GCGGGCGCGG	5100
Stopp		CCCTGCTCAC	CATGCGACGC	ACCGCGTACG	ACGACACCGG	CCGCGCGGTC	GAGTACGGCA	CCCACATCTA	CCGCGCCTCG	GGGTACGCCT	TCGAGTTCCA	5200
orf2-F		ACTGCTCGTC	CGGCCC <u>TGA</u> G	CGCGGAACGC	GGGGCCGACC	GGACGCGGAG	GCGGGTGCCA	GGCGGCCGGA	CCGCCGGCGC	GCACGGCGCG	CGCCGGCGGT	5300
ONZ-L	Stopp	CCGGCGCCGG	ACGCGGGGGA	GTGGGCGGGG	CGGTGCGACG	CCGTACTCCC	GGGGGCCGCG	GAGCCGGGCT	CAGACGCCCT	TGCGGGCGGC	CTCGCGGCGC	5400
	orf2-F	GGCCGCGGCC	TGCGCCCCCT	CACCCGCCCC	GCCACGCTGC	GGCATGAGGG	CCCCCGGCGC	CTCGGCCCG <u>A</u>	<u>GT</u> CTGCGGGA	ACGCCCGCCG	GAGCGCCGCG	
	▲	TGCCGCTTGC	CCAGCGGCGC	CTGGGACAGG	TCCTCGGCCT	GCGACCTGAG	GTTCTTGTAC	CCGTATCCGC	GTGCGCCGAG	CCAGGCCCTC	GCGGCTTCCT	5500
		ACGGCGAACG	GGTCGCCGCG	GACCCTGTCC	AGGAGCCGGA	CGCTGGACTC	CAAGAACATG	GGCATAGGCG	CACGCGGCTC	GGTCCGGGAG	CGCCGAAGGA	
		CGGCGCGTTC	GGTCGCCTCC	AGGATGTCGT	CCTCGGCCTC	CCCCGAGTCG	AGGAAGCGGA	AGGTGAAGGC	GGGGCGTGCG	GCGATGTCGT	AGCTGAGGTG	5600
		GCCGCGCAAG	CCAGCGGAGG	TCCTACAGCA	GGAGCCGGAG	GGGGCTCAGC	ICCITCGCCI	TCCACTICCG	CCCCGCACGC	CGCTACAGCA	ICGACICCAC	
		ACCCTCGGGG	GTGAACGCCG	CGCGCAGGAC	GTCGTGCTCG	GCGGCCCGTG	CCAGGAGTTC	GGCCCGCTGG	TCGGTGCCGA	GCCCGTCGAA	GACACCGCGA	5700
	[] Stort						GGICCICAAG					5000
		ACGGTGATGC	GGAAGGTGCG	CGTACTCATG	ACGCGAGCCT	AAGCACCGCC	GGGGTCGTCG	GAGGTTGCCC		CGCGAGGTAC		5800
	Oriz-F	I GECACIACO	CETTECACOE	SCALCACIAC	- GCGC - CGGA		CCCCAGCAGC			GEGETECATO	GGCGI GGAGA	

CCGGGCGGCA CAGCCACCCC CGCGCCCTCT CCCCACTCGT CCTCTGTCCC TGCCGTCCCC CGGCGAAGCC TCGCCCTGCC CCGCACCCCG CAGGGCTCCG 5900 GGCCCGCCGT GTCGGTGGGG GCGCGGGAGA GGGGTGAGCA GGAGACAGGG ACGGCAGGGG GCCGCTTCGG AGCGGGACGG GGCGTGGGGC GTCCCGAGGC GTCATGCCAG GCTCACCCAG GAACCCCGCT CGGCGGAGCG TGCCATCGCG TCGAGCGTCT CCGCGCTGTG CACCGCGTCG TCGAGCGTCG CCCCGTACGG 6000 CAGTACGGTC CGAGTGGGTC CTTGGGGCGA GCCGCCTCGC ACGGTAGCGC AGCTCGCAGA GGCGCGACAC GTGGCGCAGC AGCTCGCAGC GGGGCATGCC AGTGCCGTCC TCGATGGACC GCAGGAAGTG GTGCGCCTCG ATGACCTTGA GGTCGTCGTA GCCCATGCTG TTGGCCGCGC CCGGCTGGAA GGCGGCGTAC 6100 TCACGGCAGG AGCTACCTGG CGTCCTTCAC CACGCGGAGC TACTGGAACT CCAGCAGCAT CGGGTACGAC AACCGGCGCG GGCCGACCTT CCGCCGCATG TCGCCGTGTC CGGGGGCCCAC GTACACCGTG CTGACCGGCT GGTCCTGGTA GGCCGTGCCC CGGCTGACCG CGAGCTCGCC CATGCGGCGG AAGTCCCAGA 6200 AGCGGCACAG GCCCCGGGTG CATGTGGCAC GACTGGCCGA CCAGGACCAT CCGGCACGGG GCCGACTGGC GCTCGAGCGG GTACGCCGCC TTCAGGGTCT ACACCGCGCC CCGGGTGCCG TGCACCTCGA AGCCGTAGTT GTTCTGCTCG CCCACCGAGA CCCGGCACGC CTCCAGCACG CCCCGGGCGC CGGAGACGAA 6300 TGTGGCGCGG GGCCCACGGC ACGTGGAGCT TCGGCATCAA CAAGACGAGC GGGTGGCTCT GGGCCGTGCG GAGGTCGTGC GGGGCCCGCG GCCTCTGCTT 6400 GCGCAGCAGA CAGCCGACGT AGTCCTCGTT CTCCACGGTG CCGAGCTCAC CGCCCGTCGC GCGTGCGTGG CCGGCCGTCG CACCCGCCGG ACGTGCCCGC CGCGTCGTCT GTCGGCTGCA TCAGGAGCAA GAGGTGCCAC GGCTCGAGTG GCGGGCAGCG CGCACGCACC GGCCGGCAGC GTGGGCGGCC TGCACGGGCG 6500 CGTGGCAGGA AGACCGCGGT GTCCGCGGTG AGCGCCTCGA TCTCGCCGAG CAGGTGCCGG GCCAGGTCCA CGCCGTGCGA GGCCAGGTCG CCCAGGACGC GCACCGTCCT TCTGGCGCCAC CAGGCGCCAC TCGCGGAGCT AGAGCGGCTC GTCCACGGCC CGGTCCAGGT GCGGCACGCT CCGGTCCAGC GGGTCCTGCG CGCTGCCGCC GCGCTCCCTC TCGTAGCGCC AGGTCAGTGC CCCCTCAGGG TGTGCGGCGT AGTCGCTGAG GAGCCGGATG CGGACATGGG TGACGGTACC 6600 GCGACGGCGG CGCGAGGGAG AGCATCGCGG TCCAGTCACG GGGGAGTCCC ACACGCCGCA TCAGCGACTC CTCGGCCTAC GCCTGTACCC ACTGCCATGG GATCTCGCCG GAGGAGATCA GTTCGCGGGC GGCGGCGACG GCCGGCGCGT TGCGGTAGTT GAAGCCGACG GTGCCCTGCA CCCCGGCCTT GGCCGCGGCC 6700 CTAGAGCGGC CTCCTCTAGT CAAGCGCCCG CCGCCGCTGC CGGCCGCGCA ACGCCATCAA CTTCGGCTGC CACGGGACGT GGGGCCGGAA CCGGCGCCGG CGCGACACCG CGCGGGCGTC CGCTGCGGTG AGCCCCACCG GCTTCTCGAT CCAGATGTGC TTGCCGGCCC CGGACATGGC CACGCCGATC TCGCGGTGCA 6800 GCGCTGTGGC GCGCCCGCAG GCGACGCCAC TCGGGGTGGC CGAAGAGCTA GGTCTACACG AACGGCCGGG GCCTGTACCG GTGCGGCTAG AGCGCCACGT GGAAGTTCGG AGCGGCGATG CTCACCGCCT CGACGCGCGG GTCGGCGGCG ACCGTACGCC AGTCGCGGGT GCCCGTGGCG AAGCCGTACC GCGCGGCCGC 6900 CCTTCAAGCC TCGCCGCTAC GAGTGGCGGA GCTGCGCGCC CAGCCGCCGC TGGCATGCGG TCAGCGCCCA CGGGCACCGC TTCGGCATGG CGCGCCGGCG

Stopp orf2-G

149

6.5 Informationen zur Synthese von *susy_GC*

6.5.1 Aminosäure- und DNA-Sequenzen von Sus1_Soltu bzw. Susy_GC1

Aminosäuresequenz von Sus1_Soltu

MAERVLTRVH SLRERVDATL AAHRNEILLF LSRIESHGKG ILKPHELLAE FDAIRQDDKN KLNEHAFEEL LKSTQEAIVL PPWVALAIRL RPGVWEYIRV 100 NVNALVVEEL SVPEYLOFKE ELVDGASNGN FVLELDFEPF TASFPKPTLT KSIGNGVEFL NRHLSAKMFH DKESMTPLLE FLRAHHYKGK TMMLNDRION 200 300 SNTLQNVLRK AEEYLIMLPP DTPYFEFEHK FQEIGLEKGW GDTAERVLEM VCMLLDLLEA PDSCTLEKFL GRIPMVFNVV ILSPHGYFAQ ENVLGYPDTG 400 GOVVYILDOV PALEREMLKR IKEQGLDIIP RILIVTRLLP DAVGTTCGOR IEKVYGAEHS HILRVPFRTE KGIVRKWISR FEVWPYMETF IEDVAKEISA ELQAKPDLII GNYSEGNLAA SLLAHKLGVT QCTIAHALEK TKYPDSDIYW KKFDEKYHFS SQFTADLIAM NHTDFIITST FQEIAGSKDT VGQYESHMAF 500 600 TMPGLYRVVH GINVFDPKFN IVSPGADINL YFSYSETEKR LTAFHPEIDE LLYSDVENDE HLCVLKDRTK PILFTMARLD RVKNLTGLVE WYAKNPRLRG 700 LVNLVVVGGD RRKESKDLEE QAEMKKMYEL IETHNLNGOF RWISSQMNRV RNGELYRYIA DTKGAFVOPA FYEAFGLTVV EAMTCGLPTF ATNHGGPAEI 800 IVHGKSGFHI DPYHGEQAAD LLADFFEKCK REPSHWETIS TGGLKRIQEK YTWQIYSERL LTLAAVYGFW KHVSKLDRLE IRRYLEMFYA LKYRKMAEAV 805 PLAAE

DNA-Sequenz des klonierten aviD-Promotor-Bereiches

Per PCR wurden ein 300 bp-Abschnitt amplifiziert, der sich vor dem Start-Codon des Gens *aviD* befindet. Dieser Abschnitt umfaßt wahrscheinlich den *aviD*-Promotor sowie die Ribosomenbindestelle. Am 5'-Ende ermöglichte eine *Hin*dIII-Schnittstelle die Verknüpfung mit dem Vektor und am 3'-Ende eine *Nde*I-Schnittstelle die Verknüpfung mit dem synthetischen Gen *susy_GC1*.

AAGCTTCTGGAAGCTGCCCACCATCAGCGACATCGTCGATCACCTGACCGAAGGCCTCACGGAACACCCGACGGCGGGACGGCCATGCGTCCTGAACGCAC100TGACTCCGTAACTCATGTCAGCAGGGGGACGGCGGGGGTGAAAGGGCCGCGCCAGCCGGCCCGGAAAACCTGAAAAACACGCCAGTACGATC200GTTGTTGGGCGGAGACATTCGATGCCATCTGGAGGTTCCCTTGAAACGACCTGATCTGACGGCGCTGACCGCAAGGTGTGGGATATG286

DNA-Sequenzen von *sus1_Soltu* und *susy_GC1*

Im folgenden sind die Sequenzen der Gene *sus1_Soltu* und *susy_GC1*, die beide für dieselbe Aminosäuresequenz codieren, dargestellt. Die Sequenz *susy_GC1* entstand durch Anpassung der verwendeten Codone an den Avilamycin-Produzenten *S. viridochromogenes* Tü57. Alle Veränderungen in der Sequenz sind durch Unterlegung der jeweiligen Nukleotide hervorgehoben. Bei der Wahl der Codone wurde außerdem berücksichtigt, daß die zur Synthese nötigen Primer möglichst optimal miteinander hybridisieren können. Weiterhin mußte die Sequenz verändert werden, um bestimmte Restriktionsschnittstellen auszuschließen oder in die Sequenz einzufügen.

sus1 ATGGCTGAAC GTGTTCTGAC TCGTGTTCAT AGCCTTCGTG AACGTGTTGA TGCAACTTTA GCTGCTCACC GCAATGAGAT ACTGCTGTTT CTTTCAAGGA 100 SUSY_GC1 ATGGCCGAGC GCGTGCTGAC CCGCGTCCAC TCCCTGCGCG AGCGGGTCGA CGCCACCTG GCCGCCCACC GCAACGAGAT CCTGCTGTTC CTGTCCCGCA 100 200 TCGAAAGCCA CGGAAAAGGG ATATTGAAAC CTCACGAGCT TTTGGCTGAG TTCGATGCAA TTCGCCAAGA TGACAAAAAC AAACTGAACG AACATGCATT sus1 SUSY_GC1 TCGAGTCCCA CGGCAAGGGC ATCCTGAAGC CCCACGAGCT GCTGGCCGAG TTCGACGCCA TCCGCCAGGA CGACAAGAAC AAGCTGAACG AGCACGCCTT 200 300 sus1 CGAAGAACTC CTGAAATCCA CTCAGGAAGC GATTGTTCTG CCCCCTTGGG TTGCACTTGC TATTCGTTTG AGGCCTGGTG TCTGGGAATA CATCCGTGTG susv_GC1 CGAGGAGCTG CTGAAGTCCA CCCAGGAGGC CATCGTCCTG CCGCCGTGGG TCGCCCTGGC CATCCGCCTG CGGCCGGGCG TCTGGGAGTA CATCCGGGTC 300 sus1 AACGTCAATG CACTAGTTGT CGAGGAGCTG TCCGTCCCTG AGTATTTGCA ATTCAAGGAA GAACTTGTCG ACGGAGCCTC GAATGGAAAT TTCGTTCTCG 400 400 SUSY_GC1 AACGTCAACG CCCTGGTCGT CGAGGAGCTG TCCGTCCCGG AGTACCTCCA GTTCAAGGAA GAGCTGGTCG ACGGCGCCTC CAACGGGAAC TTCGTCCTGG 500 sus1 AGTTGGATTT CGAGCCTTTC ACTGCATCCT TTCCTAAACC AACCCTCACC AAATCTATTG GAAATGGAGT TGAATTCCTC AATAGGCACC TCTCTGCCAA susv_GC1 AGCTGGACTT CGAACCGTTC ACCGCCTCCT TCCCCAAGCC GACCCTGACC AAGTCCATCG GCAACGGCGT CGAGTTCCTG AACCGCCACC TGTCCGCGAA 500 sus1 600 AATGTTCCAT GACAAGGAAA GCATGACCCC GCTTCTCGAA TTTCTTCGCG CTCACCATTA TAAGGGCAAG ACAATGATGC TGAATGATAG GATACAGAAT GATGTTCCAC GACAAGGAGT CCATGACCCC GCTGCTGGAG TTCCTGCGCG CCCACCACTA CAAGGGCAAG ACCATGATGC TGAACGACCG CATCCAGAAC susv GC1 600 TCGAATACTC TTCAAAATGT CCTAAGGAAG GCAGAGGAAT ACCTCATTAT GCTTCCCCCA GATACTCCAT ATTTCGAATT CGAGCACAAG TTCCAAGAAA 700 sus1 SUSY_GC1 TCCAACACCC TGCAGAACGT CCTGCGGAAG GCCGAGGAGT ACCTGATCAT GCTGCCGCCG GACACCCCGT ACTTCGAGTT CGAGCACAAG TTCCAGGAGA 700 sus1 800 TCGGATTGGA GAAGGGATGG GGGGACACGG CGGAGCGTGT GCTAGAGATG GTATGCATGC TTCTTGATCT CCTTGAGGCT CCTGACTCAT GTACTCTTGA SUSY_GC1 TCGGCCTCGA GAAGGGCTGG GGCGACACCG CCGAGCGCGT CCTCGAAATG GTCTGCATGC TGCTGGACCT GCTGGAGGCG CCGGACTCGT GCACGCTGGA 800 sus1 GAAGTTCTTG GGGAGAATTC CTATGGTTTT CAATGTGGTT ATCCTTTCCC CTCATGGATA TTTTGCCCAA GAAAATGTCT TGGGTTATCC CGACACCGGT 900 SUSY_GC1 GAAGTTCCTG GGCCGCATCC CGATGGTCTT CAACGTCGTC ATCCTGTCCC CGCACGGCTA CTTCGCGCAG GAGAACGTCC TGGGCTACCC GGACACCGGC 900 sus1 GGCCAGGTTG TCTACATTTT AGATCAAGTT CCCGCCTTGG AGCGTGAAAT GCTTAAGCGC ATAAAGGAGC AAGGACTTGA TATCATCCCC CGTATTCTTA 1000 SUSY_GC1 GGCCAGGTCG TCTACATCCT GGACCAGGTG CCGGCCCTGG AGCGCGAGAT GCTGAAGCGC ATCAAGGAGC AGGGCCTGGA CATCATCCCG CGGATCCTGA 1000 1100 sus1 TTGTTACTCG TCTGCTGCCC GATGCAGTTG GAACCACTTG TGGTCAGAGG ATTGAGAAGG TGTATGGAGC AGAACACTCA CATATTCTTA GGGTCCCTTT SUSY_GC1 TEGTEACECE CETECTECE GAEGEGEGE GEACCACETE EGGECAGEGE ATEGAGAAGE TETAEGEEGE EGAECACTEE CAEATECTEE GEGECCETT 1100 1200 sus1 TAGGACTGAG AAGGGCATTG TTCGCAAATG GATCTCTCGC TTTGAAGTGT GGCCATACAT GGAGACATTC ATTGAGGATG TTGCAAAAGA AATTTCTGCA SUSY_GC1 CCGGACCGAG AAGGGCATCG TCCGCAAGTG GATCTCGCGG TTCGAGGTCT GGCCGTACAT GGAGACCTTC ATCGAGGACG TCGCCAAGGA AATCTCCGCC 1200

GAACTGCAGG CCAAGCCAGA TTTGATAATT GGAAACTACA GTGAGGGCAA TCTTGCTGCT TCTTTGCTAG CTCACAAGTT AGGCGTAACT CAGTGCACCA 1300 sus1 1300 GAGCTGCAGG CCAAGCCGGA CCTGATCATC GGCAACTACT CCGAGGGCAA CCTGGCCGCC TCCCTGCTGG CCCACAAGCT GGGCGTCACC CAGTGCACCA susy_GC1 sus1 TTGCCCACGC GTTGGAGAAA ACGAAGTATC CTGATTCCGA CATTTACTGG AAAAAGTTTG ATGAAAAATA CCATTTCTCG TCCCAGTTTA CCGCTGATCT 1400 SUSV GC1 TEGECEACEC EETEGAGAAG ACCAAGTAEC EGGAETECGA CATETAETEG AAGAAGTTEG AEGAGAAGTA CEAETTEE ECCAGTTEA ECGEEGAECT 1400 1500 sus1 CATTGCAATG AATCACACTG ATTTCATCAT CACCAGCACC TTCCAGGAGA TAGCAGGAAG CAAGGACACT GTGGGACAAT ATGAGAGCCA TATGGCATTC SUSY_GC1 GATCGCCATG AACCACACCG ACTTCATCAT CACCTCCACC TTCCAGGAGA TCGCCGGCTC CAAGGACACC GTCGGCCAGT ACGAGTCCCA CATGGCCTTC 1500 sus1 ACAATGCCTG GATTGTACAG AGTTGTTCAT GGCATTAATG TGTTCGACCC CAAATTCAAC ATTGTCTCAC CTGGAGCTGA TATTAACCTC TACTTCTCGT 1600 SUSY_GC1 ACCATGCCGG GCCTGTACCG CGTCGTCCAC GGCATCAACG TCTTCGACCC GAAGTTCAAC ATCGTCTCCC CGGGCGCCGA CATCAACCTG TACTTCTCCT 1600 1700 sus1 ACTCCGAAAC GGAAAAGAGA CTTACAGCAT TTCACCCTGA AATTGATGAG CTGCTGTATA GTGACGTTGA GAATGACGAA CATCTGTGTG TGCTCAAGGA SUSY_GC1 ACTCCGAGAC CGAGAAGCGC CTGACCGCCT TCCACCCGGA GATCGACGAG CTGCTGTACT CCGACGTCGA GAACGACGAG CACCTGTGCG TCCTGAAGGA 1700 1800 sus1 TAGGACTAAA CCAATTTTAT TCACAATGGC AAGGTTGGAT CGTGTGAAGA ATTTAACTGG ACTTGTTGAG TGGTACGCCA AGAATCCACG ACTAAGGGGA CCGCACCAAG CCGATCCTGT TCACCATGGC CCGCCTGGAC CGCGTCAAGA ACCTGACCGG CCTGGTCGAG TGGTACGCCA AGAACCCGCG CCTGCGCGGC 1800 susv_GC1 TTGGTTAACC TGGTTGTAGT TGGCGGAGAT CGAAGGAAGG AATCCAAAGA TTTGGAAGAG CAGGCAGAGA TGAAGAAGAT GTATGAGCTA ATAGAGACTC 1900 sus1 SUSY_GC1 CTGGTCAACC TGGTCGTCGT CGGCGGCGAC CGCCGCAAGG AGTCCAAGGA CCTGGAGGAG CAGGCCGAGA TGAAGAAGAT GTACGAGCTG ATCGAGACCC 1900 2000 ATAATTTGAA TGGCCAATTC AGATGGATTT CTTCCCAGAT GAACCGAGTG AGGAATGGTG AGCTCTACCG ATACATTGCT GACACTAAGG GAGCTTTCGT sus1 SUSY_GC1 ACAACCTGAA CGGCCAGTTC CGCTGGATCT CCTCCCAGAT GAACCGCGTC CGCAACGGCG AGCTGTACCG CTACATCGCC GACACCAAGG GCGCCTTCGT 2000 sus1 TCAGCCTGCA TTCTACGAGG CTTTTGGTCT GACTGTTGTC GAAGCAATGA CTTGTGGTTT GCCTACATTT GCAACTAATC ACGGTGGTCC AGCTGAGATC 2100 SUSV GC1 CCAGCCGGCC TTCTACGAGG CCTTCGGCCT GACCGTCGTC GAGGCCATGA CCTGCGGCCT GCCGACCTTC GCCACCAACC ACGGCGGCCC GGCCGAGATC 2100 ATCGTTCATG GAAAGTCCGG CTTCCACATT GATCCATATC ACGGTGAGCA AGCTGCTGAT CTGCTAGCTG ATTTCTTTGA GAAATGCAAG AGAGAGCCTT 2200 sus1 SUSY_GC1 ATCGTCCACG GCAAGTCCGG CTTCCACATC GACCCGTACC ACGGCGAGCA GGCCGCCGAC CTGCTGGCCG ACTTCTTCGA GAAGTGCAAG CGCGAGCCGT 2200 2300 sus1 CACATTGGGA AACCATTTCG ACGGGTGGCC TGAAGCGCAT CCAAGAGAAG TACACTTGGC AAATCTACTC CGAAAGGCTA TTGACACTGG CTGCTGTTTA susv_GC1 CCCACTGGGA GACCATCTCC ACCGGCGGCC TGAAGCGCAT CCAGGAGAAG TACACCTGGC AGATCTACTC CGAGCGCCTG CTGACCCTGG CCGCCGTCTA 2300 2400 sus1 TGGGTTCTGG AAACATGTTT CTAAGCTTGA TCGTCTAGAA ATCCGTCGCT ATCTTGAAAT GTTTTATGCT CTCAAGTACC GTAAGATGGC TGAAGCTGTT CGGCTTCTGG AAGCACGTCT CCAAGCTGGA CCGCCTGGAG ATCCGCCGCT ACCTGGAGAT GTTCTACGCC CTGAAGTACC GCAAGATGGC CGAGGCCGTC 2400 susv_GC1 2418 sus1 CCATTGGCTG CTGAGTGA 2418 *susy_GC1* CC**GC**TGGC**C**G C**C**GAGTGA

6.5.2 Codon-Präferenz-Tabelle für S. viridochromogenes Tü57

Die in Tab. 6.1 aufgeführten Daten zur Codon-Präferenz von *S. viridochromogenes* Tü57 stammen aus einer Datenbank des Kazusa DNA Research Instituts (Nakamura *et al.*, 2000).

Tab. 6.1: Codon-Präferenz-Tabelle für S. *viridochromogenes* Tü57. Für jedes Codon ist angegeben mit welcher Häufigkeit es in Gensequenzen je 1000 Codone vorkommt. Außerdem ist angegeben, mit welcher prozentualen Wahrscheinlichkeit ein bestimmtes Codon/Aminosäure vorkommt. Der Datensatz ist unter http://www.kazusa.or.jp/codon/cgibin/showcodon.cgi?species= Streptomyces+viridochromogenes+[gbbct] abrufbar und beruht auf der Auswertung von 59 Genen mit 20347 Codonen. Die Stopp-Signale sind in der Tabelle als "Stopp" bezeichnet.

AS	Codon	Häufigkeit in ‰	Nutzung in %
Phe	TTT	0,5	2
Phe	TTC	28,9	98
Leu	TTA	0,3	0
Leu	TTG	2,5	2
Leu	CTT	1,6	2
Leu	CTC	32,2	31
Leu	СТА	0,3	0
Leu	CTG	66,3	64
lle	ATT	0,8	3
lle	ATC	30,8	95
lle	ATA	0,9	3
Met	ATG	16,4	100
Val	GTT	1,7	2
Val	GTC	47,2	55
Val	GTA	2,4	3
Val	GTG	35,3	41
Ser	тст	0,5	1
Ser	TCC	20,0	38
Ser	TCA	1,2	2
Ser	TCG	16,1	30
Pro	ССТ	1,5	2
Pro	CCC	27,4	41
Pro	CCA	1,5	2
Pro	CCG	36,8	55
Thr	ACT	1,1	2
Thr	ACC	36,9	64
Thr	ACA	2,2	4
Thr	ACG	17,1	30
Ala	GCT	2,8	2
Ala	GCC	70,4	58
Ala	GCA	5,0	4
Ala	GCG	43,8	36

6.5.3 Primerkombinationen für die PCR-basierte Gensynthese

Tab. 6.2: Übersicht über die Zusammensetzung der Primer-Mixe, die jeweils in einer PCR zur Synthese eines ca. 120 bp-Fragments eingesetzt wurden.

Primer-Mix	Primerkombination	Primeranzahl
1	A1, A2, AB3, AB4, BC5, BC6, CD7, CD8	8
2	CD7, CD8, DE9, DE10, EF11, EF12, FG13, FG14	8
3	FG13, FG14, GH15, GH16, HI17, HI18, IJ19, IJ20	8
4	IJ19, IJ20, JK21, JK22, KL23, KL24, LM25, LM26	8
5	LM25, LM26, MN27, MN28, NO29, NO30, OP31, OP32	8
6	OP31, OP32, PQ33, PQ34, QR35, QR36, RS37, RS38	8
7	RS37, RS38, ST39, ST40, TU41, TU42, U43, U44	8
8	A45-2, A46-2, AB47, AB48, BC49, BC50, CD51, CD52	8
9	CD51, CD52, DE53, DE54, EF55, EF56, FG57, FG58	8
10	FG57, FG58, GH59, GH60, HI61, HI62, IJ63, IJ64	8
11	IJ63, IJ64, JK65, JK66, KL67, KL68, LM69, LM70	8
12	LM69, LM70, MN71, MN72, NO73, NO74, OP75, OP76	8
13	OP75, OP76, PQ77, PQ78, QR79, QR80, RS81, RS82	8
14	RS81, RS82, ST83, ST84, TU85, TU86, UV87, UV88, V89, V90	10
3A	PCR-Produkte aus Ansatz 8-14	
3B	PCR-Produkte aus Ansatz 1-7	

6.6 Plasmidkarten

HindIII Sma BamH \Diamond 5 Hindll lac P Xho ermE up lacZ Sa , ermE aviD-S Not Sma pSP1/aviD-S 7 1 kb Sond ori pMB1 BamH bla ad EcoR Dra Dral Dra

6.6.1 Inaktivierungsplasmid pSP1/aviD-S

Abb. 6.2: Darstellung des Inaktivierungsplasmids pSP1/aviD-S mit mutiertem aviD-Gen. Innerhalb der aviD-Sequenz wurde per Restriktion mit SacII und Religation des Plasmids ein 291 bp-Fragment deletiert. Dadurch kommt es zu einer *in-frame*-Deletion, die auf Proteinebene rund 100 Aminosäuren umfaßt.

Zur Überprüfung der Mutante wurde die genomische DNA mit Smal geschnitten, die DNA-Fragmente wurden gelelektrophoretisch aufgetrennt und ein "Southern Blot" wurde durchgeführt. Ein 2 kb-Smal-Fragment (siehe Abb.) diente als Sonde. Im Wildtyp gibt es eine zusätzliche Smal-Schnittstelle, die eine Unterscheidung zwischen Wildtyp und aviD-Mutante möglich macht.

6.6.2 Expressionsplasmid pSET152/aviD

Abb. 6.3: Darstellung des Expressionsplasmids pSET152/aviD. Der Vektor pSET152 wurde mit einem *Bam*HI/*Eco*RI-Fragment aus dem Avilamycin-Cluster ligiert. Dieser DNA Abschnitt enthält *aviD* zusammen mit dem nativen *aviD*-Promotor. Dieses Plasmid wurde zur Komplementation der *aviD*-Mutante verwendet.

BamH Xba Hindll $\langle \neg \rangle$ ori T 'lacZ S EcoT22 Mlu 5 pokGT aac(3)IV $\Delta Ncol$ pKC1132/ApokGT1 10,1 kb 'nер lacZ *Eco*RI EcoRV BamH Cla EcoT22 Mlu

6.6.3 Inaktivierungsplasmid pKC1132/\[].pokGT1

Abb. 6.4: Darstellung des Inaktivierungsplasmids pKC1132/∆*pokGT1*. Ausgehend von einem 6,5 kb großen *Bam*HI-Fragment in pSK-(pSK/213) wurde eine *Ncol*-Schnittstelle durch Restriktion, Auffüllen der entstandenen Überhänge und Religation in eine *Eco*T22I-Schnittstelle umgewandelt. Die 4 zusätzlichen Basenpaare führen zu einer Leserasterverschiebung innerhalb des Gens *pokGT1*. Das *Bam*HI-Fragment ist möglicherweise in anderer Orientierung in den Vektor pKC1132 integriert worden. Dieses Plasmid wurde zur Konjugation von *S. diastatochromogenes* eingesetzt.

6.6.4 Expressionsplasmid pAF1/urdR

Abb. 6.5: Darstellung des Expressionsplasmids pAF1/*urdR*. Hinter dem *ermE* up-Promotor wurden folgende Elemente eingefügt: Der codierende Bereich von *urdR* (ohne Stopp-Codon), 6 Histidin-Codone, eine *Xba*I-Schnittstelle und ein Stopp-Codon. Das Plasmid eignet sich zur Expression anderer Gene, um das entsprechende Protein um einen C-terminalen Histidin-Tag zu erweitern. Für die Klonierung sind die Schnittstellen *Hin*dIII und *Xba*I vorgesehen.

6.6.5 Expressionsplasmid pAF2/urdS

Abb. 6.6: Darstellung des Expressionsplasmids pAF2/urdS. Hinter dem *ermE* up-Promotor wurden nach der *Eco*RI-Schnittstelle folgende Elemente eingefügt: Die ribosomale Bindestelle von *urdS*, das Start-Codon ATG gefolgt von 6 Histidin-Codonen und daran anschließend eine *Bam*HI-Schnittstelle. Es folgt der codierende Bereich von *urdS* mit einer *Xba*I-Schnittstelle im Bereich des Stopp-Codons. Das Plasmid eignet sich zur Expression anderer Gene, um das entsprechende Protein um einen N-terminalen Histidin-Tag zu erweitern. Für die Klonierung sind die Schnittstellen *Bam*HI und *Xba*I vorgesehen.

6.6.6 Expressionsplasmid pAF3/urdS

Abb. 6.7: Darstellung des Expressionsplasmids pAF3/*urdS*. Hinter dem *ermE* up-Promotor wurden nach der *Eco*RI-Schnittstelle folgende Elemente (aus pET-28a(+)) eingefügt: Ribosomenbindestelle, das Start-Codon ATG, 6 Histidin-Codone, Codone für die Thrombin-Erkennung und außerdem T7-Tag-Codone, woran sich nach wenigen Nukleotiden eine *Bam*HI-Schnittstelle anschließt. Es folgt der codierende Bereich von *urdS* mit einer *Xba*I-Schnittstelle im Bereich des Stopp-Codons. Das Plasmid eignet sich zur Expression anderer Gene, um das entsprechende Protein um einen N-terminalen Histidin-Tag mit Thrombin-Schnittstelle zu erweitern. Für die Klonierung sind die Schnittstellen *Bam*HI und *Xba*I vorgesehen.

6.6.7 Expressionsplasmid pAF1/aviS

Abb. 6.8: Darstellung des Expressionsplasmids pAF1/aviS. Das Plasmid wurde ausgehend von pAF1/urdR. erstellt. Dazu wurde aviS (ohne Stopp-Codon) per PCR amplifiziert. Das Einbringen in das Plasmid erfolgte über die *Hin*dIII- und *Xbal*-Schnittstellen.

6.6.8 Expressionsplasmid pAF1/aviT

Abb. 6.9: Darstellung des Expressionsplasmids pAF1/aviT. Das Plasmid wurde ausgehend von pAF1/urdR. erstellt. Dazu wurde aviT (ohne Stopp-Codon) per PCR amplifiziert. Das Einbringen in das Plasmid erfolgte über die *Hin*dIII- und *Xba*I-Schnittstellen.

6.6.9 Expressionsplasmid pAF1/simB7

Abb. 6.10: Darstellung des Expressionsplasmids pAF1/*simB7*. Das Plasmid wurde ausgehend von pAF1/*urdR*. erstellt. Dazu wurde *simB7* (ohne Stopp-Codon) per PCR amplifiziert. Das Einbringen in das Plasmid erfolgte über die *Hin*dIII- und *Xba*I-Schnittstellen.

Abb. 6.11: Darstellung des Expressionsplasmids pSETerm/susy. Das Intron-freie Saccharosesynthasegen sus1_Soltu wurde mit Ncol und BamHI aus dem Plasmid pTSSuc ausgeschnitten. Aus dem Vektor pSET-1cerm wurde das urdGT1c-Insert durch Restriktion mit Bg/II und Ndel entfernt. Nach Auffüllen der 5'-Überhänge wurde das Insert in den Vektor ligiert und die Orientierung überprüft.

6.6.11 Expressionsplasmid pKC1218/susy_GC

Abb. 6.12: Darstellung des Expressionsplasmids pKC1218/susy_GC. In den replikativen Vektor pKC1218 wurde über die *Hin*dIII- und *Xba*I-Schnittstelle das synthetische Gen *susy_GC* mit vorgeschaltetem *aviD*-Promotor-Bereich eingebracht.

Danksagung

Die vorliegende Arbeit wurde am Lehrstuhl für Pharmazeutische Biologie und Biotechnologie an der Albert-Ludwigs-Universität Freiburg angefertigt.

Mein besonderer Dank gilt Herrn Prof. Dr. Andreas Bechthold für die Bereitstellung des interessanten Themas und die stete Ansprechbarkeit bei allen Fragen und Problemen.

Sehr herzlich möchte ich mich auch bei Frau Prof. Dr. Irmgard Merfort für das Interesse an meiner Arbeit und die Übernahme des Korreferates bedanken.

Ich danke auch Herrn Prof. Dr. Peter Graumann für das entgegengebrachte Interesse und die Bereitschaft, dem Rigorosum als Prüfer beizuwohnen.

Zudem möchte ich Herrn Dr. Dirk Hoffmeister, Frau Dr. Ursula von Mulert und Frau Dr. Gabriele Weitnauer für die wissenschaftliche Betreuung während meiner Promotion sowie die Anregungen und Ratschläge bei der Durchführung meines Projekts danken.

Bei allen jetzigen und ehemaligen Laborkollegen bedanke ich mich für für die jederzeit erwiesene Hilfsbereitschaft und das gute Miteinander. Insbesondere Dr. Carsten Hofmann und Andreas Günther gilt mein Dank für den Beistand bei den analytischen Untersuchungen. Ein besonderes Dankeschön gilt meinen "Weggefährten" Corina Bihlmaier und Raija Boll für ihre Unterstützung, ihr Engagement beim Korrekturlesen und vor allem für die schöne gemeinsame Zeit.

Ich möchte den am Polyketomycin-Projekt beteiligten Mitarbeitern der Combinature Biopharm AG (Berlin) und Herrn Dr. Tilmann Weber (Uni Tübingen) für die zur Verfügung gestellten Cosmide und Daten danken.

Herrn Prof. Dr. Lothar Elling (RWTH Aachen) und seinen Mitarbeitern danke ich für die Bereitstellung des "Susy"-Gens und die Kooperation zwecks Expression von Desoxyzuckerbiosynthesegenen.

Für die Möglichkeit, am Graduiertenkolleg "Biochemie der Enzyme" teilzunehmen, und für das damit verbundene Stipendium bedanke ich mich bei der Deutschen Forschungsgemeinschaft (DFG).

Bildungsgang

1986-1995	Marienschule Lippstadt
1995-1998	Westfälische Wilhelms-Universität Münster Biologiestudium (Vordiplom im Oktober 1997)
1998-2001	Eberhard-Karls-Universität Tübingen Biologiestudium (Diplomabschluß im Mai 2001) Thema der Diplomarbeit: Molekularbiologische Untersuchungen zum Ureidtransport in Leguminosen
2002-2006	Albert-Ludwigs-Universität Freiburg Institut für Pharmazeutische Wissenschaften Lehrstuhl für Pharmazeutische Biologie und Biotechnologie Arbeiten zur vorliegenden Dissertation Jan. '02-Sept. '04 Stipendiatin im Graduiertenkolleg "Biochemie der Enzyme" der DFG