Publikationen
2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2014 2013 2012 2011 2010 2009 vor 2009
Rauch J., Kurscheidt K. , Shen K.-W., Andrei A., Daum N., Öztürk Y., Melin F.,Layer G., Hellwig P., Daldalb F., Koch H.-G. (2025) The small membrane protein CcoS is involved in cofactor insertion into the cbb3-type cytochrome c oxidase. Biochimica et Biophysica Acta (BBA) - Bioenergetics,1866 (1):149524, doi: 10.1016/j.bbabio.2024.149524 |
Heidinger L., Fix I., Friedrich T. & Layer G. (2024) Trapping the substrate radical of heme synthase AhbD. |
Vazquez Ramos J., Kulka-Peschke C.J., Bechtel D.F., Zebger I., Pierik A.J. & Layer G. (2024) Characterization of the iron-sulfur clusters in the nitrogenase-like reductase CfbC/D required for coenzyme F430 biosynthesis.
FEBS J., 291, 3233. |
Fix I., Heidinger L., Friedrich T. & Layer G. (2023) The Radical SAM heme synthase AhbD from Methanosarcina barkeri contains two auxiliary [4Fe-4S] clusters.
Biomolecules, 13, 1268. |
Chembiochem., 24, e202300133. |
Gagsteiger J., Jahn, S., Heidinger L., Gericke L., Andexer J.N., Friedrich T., Lönarz C. & Layer G. (2022) A cobalamin-dependent Radical SAM enzyme catalyzes the unique Cα-methylation of glutamine in methyl-coenzyme M reductase.
Angew. Chem. Int. Ed., 61, e202204198. |
Layer G., Jahn M., Moser J. & Jahn D. (2022) Radical SAM enzymes involved in tetrapyrrole biosynthesis and insertion.
ACS Bio. Med. Chem. Au, 2, 196-204. |
Layer G. (2021) Heme biosynthesis in prokaryotes.
BBA - Molecular Cell Research, 1868, 118861. |
|
Layer G. (2020) Radical S-adenosylmethionine enzymes in heme biosynthesis.
In: Hung-Wen (Ben) Liu and Tadhg P. Begley (eds.), Comprehensive Natural Products III: Chemistry and Biology, Volume 5, 349-363. |
Jasper J., Vazquez Ramos J., Trncik C., Jahn D., Einsle O., Layer G. & Moser J. (2020) Chimeric interaction of nitrogenase-like reductases with the MoFe protein of nitrogenase.
Chembiochem, 21, 1733-1741. |
Deobald D., Hanna R., Shahryari S., Layer G. & Adrian L. (2020) Identification and characterization of a bacterial core methionine synthase.
Sci. Rep., 10, 2100. |
Fan T., Grimm B. & Layer G. (2019) Porphyrin and heme synthesis.
in "Advances in Botanical Research", 91, 89-131. |
Klünemann T., Preuß A., Adamczack J., Rosa L.F.M., Harnisch F., Layer G. & Blankenfeldt W. (2019) Crystal structure of dihydro-heme d1 dehydrogenase NirN from Pseudomonas aeruginosa reveals amino acid residues essential for catalysis.
J. Mol. Biol., 431, 3246-3260. |
Moser J. & Layer G. (2019) Enzymatic systems with homology to nitrogenase: Biosynthesis of bacteriochlorophyll and coenzyme F430.
Methods Mol. Biol., 1876, 25-35. |
Moser J., Jasper J., Vazquez Ramos J., Sowa S.T. & Layer G. (2019) Expression, purification, and activity analysis of chlorophyllide oxidoreductase and Ni2+-sirohydrochlorin a,c-diamide reductase.
Methods Mol. Biol., 1876, 125-140. |
Deobald D., Adrian L., Schöne C., Rother M. & Layer G. (2018) Identification of a unique Radical SAM methyltransferase required for the sp3-C-methylation of an arginine residue of methyl-coenzyme M reductase.
Sci. Rep., 8, 7404. |
Boss L., Oehme R., Billig S., Birkemeyer C. & Layer G. (2017) The Radical SAM enzyme NirJ catalyzes the removal of two propionate side chains during heme d1 biosynthesis.
FEBS J., 284, 4314-4327. |
Moore S.J., Sowa S.T., Schuchardt C., Deery E., Lawrence A.D., Ramos J.V., Billig S., Birkemeyer C., Chivers P.T., Howard M.J., Rigby S.E., Layer G. & Warren M.J. (2017) Elucidation of the biosynthesis of the methane catalyst coenzyme F430.
Nature, 543, 78-82. |
Layer G., Krausze J. & Moser J. (2017) Reduction of chemically stable multibonds: Nitrogenase-like biosynthesis of tetrapyrroles.
Adv. Exp. Med. Biol., 925, 147-161. |
Layer G. (2016) Siroheme decarboxylase in complex with iron-uroporphyrin III.
in "Encyclopedia of Inorganic and Bioinorganic Chemistry", ed R.A. Scott, John Wiley, Chichester. |
Kühner M., Schweyen P., Hoffmann M., Vazquez Ramos J., Reijerse E.J., Lubitz W., Bröring M. & Layer G. (2016) The auxiliary [4Fe-4S] cluster of the Radical SAM heme synthase from Methanosarcina barkeri is involved in electron transfer.
Chem. Sci., 7, 4633-43. |
Adamczack J., Hoffmann M., Papke U., Haufschildt K., Nicke T., Bröring M., Sezer M., Weimar R., Kuhlmann U., Hildebrandt P. & Layer G. (2014) NirN from Pseudomonas aeruginosa is a novel electron-bifurcating dehydrogenase catalyzing the last step of heme d1 biosynthesis.
J. Biol. Chem., 289, 30753-62. |
Haufschildt K., Schmelz S., Kriegler T.M., Neumann A., Streif J., Arai H., Heinz D.W. & Layer G. (2014) The crystal structure of siroheme decarboxylase in complex with iron-uroporphyrin III reveals two essential histidine residues.
J. Mol. Biol., 426, 3272-86. |
Kühner M., Haufschildt K., Neumann A., Storbeck S., Streif J. & Layer G. (2014) The alternative route to heme in the methanogenic archaeon Methanosarcina barkeri.
Archaea, 2014, Article ID 327637. |
Nicke T., Schnitzer T., Münch K., Adamczack J., Haufschildt K., Buchmeier S., Kucklick M., Riedel K., Felgenträger U., Jänsch L. & Layer G. (2013) Maturation of the cytochrome cd1 nitrite reductase NirS from Pseudomonas aeruginosa requires transient interactions between the three proteins NirS, NirN and NirF.
Biosci. Rep., 33, art:e00048. |
Kaufholz A.-L., Hunter G. A., Ferreira G. A., Lendrihas T., Hering V., Layer G., Jahn M. & Jahn D. (2013) Aminolevulinic acid synthase of Rhodobacter capsulatus - high resolution kinetic investigation of the structural basis for substrate binding and catalysis.
Biochem. J., 451, 205-16. |
Abicht H.K., Martinez J., Layer G., Jahn D. & Solioz M. (2012) Lactococcus lactis HemW (HemN) is a heme-binding protein with a putative role in heme trafficking.
Biochem. J., 442, 335-43. |
Layer G. & Warren M.J. (2011) Biosynthesis of siroheme, cofactor F430 and heme d1.
Handbook of Porphyrin Science, 19, 111-38. |
Storbeck S., Saha S., Krausze J., Klink B.U., Heinz D.W. & Layer G. (2011) Crystal structure of the heme d1 biosynthesis enzyme NirE in complex with its substrate reveals new insights into the catalytic mechanism of S-adenosyl-L-methionine dependent uroporphyrinogen III methyltransferases.
J. Biol. Chem., 286, 26754-67. |
Layer G., Jahn D. & Jahn M. (2011) Heme biosynthesis.
Handbook of Porphyrin Science, 15, 159-215. |
Storbeck S., Rolfes S., Raux-Deery E., Warren M.J., Jahn D. & Layer G. (2010) A novel pathway for the biosynthesis of heme in Archaea: Genome-based bioinformatic predictions and experimental evidence.
Archaea, 2010, ID 175050. |
Wollers S., Layer G., Garcia-Serres R., Signor L., Clemancey M., Latour JM., Fontecave M. & Ollagnier-de Choudens S. (2010) Iron-sulfur (Fe-S) cluster assembly: the SufBCD complex is a new type of Fe-S scaffold with a flavin redox cofactor.
J. Biol. Chem., 285, 23331-41. |
Layer G., Reichelt J., Jahn D. & Heinz D.W. (2010) Structure and function of enzymes in heme biosynthesis.
Protein Science, 19, 1137-61. |
Rand K., Noll C., Schiebel H.M., Kemken D., Dülcks T., Kalesse M., Heinz D.W. & Layer G. (2010) Oxygen-independent coproporphyrinogen III oxidase HemN utilizes harderoporphyrinogen as a reaction intermediate during conversion of coproporphyrinogen III into protoporphyrinogen IX.
Biol. Chem., 391, 55-63. |
Layer G., Jahn D., Deery E., Lawrence A.D. & Warren M.J. (2010) Biosynthesis of heme and vitamin B12.
in "Comprehensive Natural Products II, Chemistry and Biology" (Mander, L., Lui, H.-W.) Elsevier: Oxford; 7, 445–99. |
Storbeck S., Walther J., Müller J., Parmar V., Schiebel H.M., Kemken D., Dülcks T., Warren M.J. & Layer G. (2009) The Pseudomonas aeruginosa nirE gene encodes the S-adenosyl-L-methionine dependent uroporphyrinogen III methyltransferase required for heme d1 biosynthesis.
FEBS J., 276, 5973-82. |
Layer G., Gaddam S.A., Ayala-Castro C.N., Ollagnier-de Choudens S., Lascoux D., Fontecave M. & Outten F.W. (2007) SufE transfers sulfur from SufS to SufB for iron-sulfur cluster assembly.
J. Biol. Chem., 282, 13342-50. |
Layer G., Ollagnier-de Choudens S., Sanakis Y. & Fontecave M. (2006) Iron-sulfur cluster biosynthesis: characterization of Escherichia coli CyaY as an iron donor for the assembly of [2Fe-2S] clusters in the scaffold IscU.
J. Biol. Chem., 281, 16256-63. |
Layer G., Pierik A.J., Trost M., Rigby S.E., Leech H.K., Grage K., Breckau D., Astner I., Jänsch L., Heathcote P., Warren M.J., Heinz D.W. & Jahn D. (2006) The substrate radical of Escherichia coli oxygen-independent coproporphyrinogen III oxidase HemN.
J. Biol. Chem., 281, 15727-34. |
Reents H., Gruner I., Harmening U., Böttger L.H., Layer G., Heathcote P., Trautwein A.X., Jahn D. & Härtig E. (2006) Bacillus subtilis Fnr senses oxygen via a [4Fe-4S] cluster coordinated by three cysteine residues without change in the oligomeric state.
Mol. Microbiol., 60, 1432-45. |
Layer G., Grage K., Teschner T., Schünemann V., Breckau D., Masoumi A., Jahn M., Heathcote P., Trautwein A.X. & Jahn D. (2005) Radical S-adenosylmethionine enzyme coproporphyrinogen III oxidase HemN: functional features of the [4Fe-4S] cluster and the two bound S-adenosyl-L-methionines.
J. Biol. Chem., 280, 29038-46. |
Layer G., Kervio E., Morlock G., Heinz D.W., Jahn D., Retey J. & Schubert W.D. (2005) Structural and functional comparison of HemN to other radical SAM enzymes.
Biol. Chem., 386, 971-80. |
Layer G., Heinz D.W., Jahn D. & Schubert W.D. (2004) Structure and function of Radical SAM enzymes.
Curr. Opin. Chem. Biol., 8, 468-76. |
Layer G., Moser J., Heinz D.W., Jahn D. & Schubert W.D. (2003) Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of Radical SAM enzymes.
EMBO J., 22, 6214-24. |
Breckau D., Mahlitz E., Sauerwald A., Layer G. & Jahn D. (2003) Oxygen-dependent coproporphyrinogen III oxidase (HemF) from Escherichia coli is stimulated by manganese.
J. Biol. Chem., 278, 46625-31. |
Baysse C., Matthijs S., Schobert M., Layer G., Jahn D. & Cornelis P. (2003) Co-ordination of iron acquisition, iron porphyrin chelation and iron-protoporphyrin export via the cytochrome c biogenesis protein CcmC in Pseudomonas fluorescens.
Microbiology, 149, 3543-52. |
Layer G., Verfürth K., Mahlitz E. & Jahn D. (2002) Oxygen-independent coproporphyrinogen-III oxidase HemN from Escherichia coli.
J. Biol. Chem., 277, 34136-42. |